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This research is divided into three major parts. In part I, the critical 

supersaturations required for the homogeneous nucleation of 2,2,2-trifluorothanol (TFE) 

vapor have been measured over a temperature range (266-296 K) using an upward 

thermal diffusion cloud chamber (DCC). The measured supersaturations are in agreement 

with the predictions of both the classical and the scaled theory of nucleation. Moreover, 

the condensation of supersaturated TFE vapor on laser-vaporized magnesium 

nanoparticles has been studied under different experimental conditions, such as the 

supersaturation, the pressure and the electric field. In part II, the laser vaporization 
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controlled condensation (LVCC) technique was used to prepare Au-Ag alloy 

nanoparticles in the vapor phase using designed targets of compressed Au and Ag 

micron-sized powder mixtures of selected composition. The results showed that the 

optical properties of these nanoparticles could be tuned depending on the alloy 

composition and the laser wavelength. Different intermetallic nanoparticles (FeAl and 

NiAl) from the vapor phase has also been prepared, using the same approach. 

In this work, the fraction of the charged particles generated during the laser 

vaporization process was used to prepare a new class of nanoparticle assemblies in the 

LVCC chamber under the influence of an electric field. The results showed that the 

electric field required to induce the formation of these nanoassemblies is material and 

field dependent. By coupling the LVCC chamber with the differential mobility analyzer, 

size-selected nanoparticles have been prepared in the vapor phase. The prepared 

nanoparticles were characterized by different techniques such as scanning electron 

microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) 

and UV-visible spectroscopy.  

In part III, new methods were developed to prepare nanoparticle-polymer composites 

from the vapor phase. In the first method, the LVCC method was used to prepare a 

carbonaceous cross-linked resin, with different nanoparticles (Ni, Pt and FeAl) embedded 

inside. In the second method, free radical-thermally initiated polymerization was used to 

polymerize a monomer vapor of styrene on the surfaces of activated Ni nanoparticles.  
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Chapter 1 Introduction 
 

Nucleation is an important phenomenon that has many practical applications in 

science and technology. It plays a crucial role in atmospheric as well as in material 

sciences.1,2 Nucleation is a first order phase transition process that can take place in 

vapor, liquid or solid phase. Generally, the nucleation process can be divided into two 

main types. The simplest and most studied is homogeneous nucleation, in which 

spontaneous decay of a supersaturated vapor occurs by thermal fluctuations through the 

formation of nuclei or embryonic droplets in the liquid phase.1,2 In the homogeneous 

nucleation, the nuclei consist of the same molecules as in the condensing vapor. In other 

words, homogeneous nucleation takes place in the absence of any foreign particles, 

surfaces, or ions. The other type of nucleation is the heterogeneous process that occurs on 

pre-existing surfaces, foreign particles, or ions. The homogeneous nucleation process 

from vapor to liquid phase has been extensively studied, both experimentally and 

theoretically3,4, for different compounds. This is, in part, because measuring techniques 

and theoretical models have been developed rapidly over the past decade.  

The most popular nucleation theory, the so-called “classical nucleation theory 

(CNT)”, was developed by Becker and Doring in 1936.1,2 This theory is based on the 

capillarity approximation, and treats the condensation nucleus as a small fragment of bulk 
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liquid with the same macroscopic properties as the bulk such as surface tension and 

density.  

The concepts of the classical nucleation theory are important, in understanding the 

subsequent discussion of the synthesis of nanomaterials. In order to study these factors 

that control the nucleation process from supersaturated vapors, homogeneous nucleation 

of fluoroalcohols was studied. 

There is an increasing interest in fluoroalcohols not only because of their 

important uses in biological systems,5,6 but also because they have been recently used as 

vapor surfactants.7 Fluoroalcohols at low concentrations in the vapor phase exhibited 

surfactant properties by reducing the surface tension of organic and inorganic liquids.7 

Based on these results, trifluoroethanol was used as a nucleating agent in supersaturated 

vapors of aliphatic alcohols and water, simply by reducing the surface free energy of the 

nucleation barrier that depends on the cube of the surface tension, and hence increasing 

their nucleation rates.8 Therefore, it is of interest to study its vapor-liquid transition. 

In this dissertation, the main focus is on the study of the nucleation process from 

supersaturated vapors that are generated from liquids as well as from metals. Unlike the 

simple homogeneous transition from vapor to liquid phase, the nucleation of 

supersaturated metallic vapors has a more complicated pattern that probably involves 

more than one nucleation mechanism. 

Nanomaterials have drawn special attention over the past decade, in part due to 

their unique properties which are usually very different from bulk properties.9,10 For 

example, nanoparticles usually exhibit unique mechanical, electronic, optical and 
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magnetic properties that have inspired several applications in catalysis, nanodevices and 

sensors.9,10 Many of these unique properties are dependent on the size and shape of the 

nanoparticles.9,10 

The interest in nanoparticles has stimulated many improvements in the 

preparation methods involved in the chemical and the physical techniques used. Recently, 

a novel technique used to synthesize nanoparticles of controlled size and composition, 

was reported.11-13 This technique (LVCC) uses laser vaporization of bulk materials, under 

controlled condensation conditions, to prepare a wide variety of metallic and 

semiconductor nanoparticles.11-13 Because of the many advantages over the chemical 

methods, the LVCC method was used in this dissertation to investigate metallic alloying 

from the vapor phase and the preparation of size-selected metal nanoparticles. 

Shown in Figure 1 are the different research areas that were explored in this 

study. There are two main topics; a) homogeneous nucleation from supersaturated vapor 

to liquid phase and b) nanoparticle formation from the vapor phase using the laser 

vaporization technique. The commonality of these two projects was also explored. The 

condensation of supersaturated vapor, under well-defined nucleation conditions, on 

neutral and charged nanoparticles generated from laser vaporization of a metallic target 

was studied. 

The assembly of nanoparticles, under the influence of an electric field offers 

many opportunities for the fabrication of microwires,14 nanostructured films,15 ordered 

arrays,16 and dendritic structures.17 These assemblies are usually established by the means 

of electrophoretic,15,16 dielectrophoretic,14,17 and electrochemical18,19 forces that act on the 



www.manaraa.com

4 

 

particles. The capability of the LVCC method has also been enhanced by taking 

advantage of the fact that laser vaporization produces a significant fraction of charged 

nanoparticles (by ions or free electrons). Typically, a 10 ns laser pulse with power density 

of (106-107 W/cm2) produces about 1014 atoms and 106 ions from any metal or solid 

target.11 In this dissertation, the effect of an electric field on charged nanoparticles, 

generated by the laser vaporization in an inert gas (He) and in supersaturated vapor of 

fluoroalcohols was investigated. Additionally, the electric field was used to sort charged 

nanoparticles according to their sizes. The Differential Mobility Analyzer (DMA)20 was 

used to prepare monodispersed nanoparticles and to measure the size distribution under 

given nucleation conditions during the LVCC process. Figure 2 shows a schematic with 

the different aspects and uses of the electric field effects on charged nanoparticles 

prepared in the vapor phase by laser vaporization.  

A new method was developed to prepare nanoparticle-polymer composites from 

the vapor phase. Free-radical thermally initiated polymerization was used to polymerize a 

monomer vapor on the surfaces of activated nanoparticles. The polymer component in the 

nanocomposite was characterized by FT-IR and 1H-NMR spectroscopy. The 

nanoparticles dispersity in the polymer matrix and their crystalline nature were analyzed 

under the scanning transmission electron microscope (STEM) and XRD. 

The chapters covered in this dissertation are as follows: Chapter Two begins with 

a review of the classical nucleation theory followed by the experimental measurements of 

the homogeneous nucleation rate of 2,2,2-trifluoroethanol. Chapter Three, the synthesis 

and characterization of intermetallic alloys nanoparticles, prepared from the vapor phase 
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are presented alond with the investigation of the effect of an electric field on the 

assemblies and growth of nanoparticles from the vapor phase. In Chapter Four, the 

condensation of the supersaturated vapor on neutral and charged nanoparticles was 

explored. Finally, in Chapter Five, new methods for incorporation of nanoparticles in 

polymers were investigated. 

In general, the overall work presented in this dissertation illustrates the 

importance of nucleation studies in understanding the mechanisms of nanoparticle’s 

formation from the vapor phase and the role of ion-induced nucleation in the growth 

mechanism and the morphology of the resulting nanoparticles. Future studies could 

specifically deal with using the concept of surface enrichment to control the surface 

properties of nanoparticles prepared from the vapor phase. Other possibilities include the 

application of ion-induced nucleation to produce metallic filaments and fibers embedded 

within polymer films generated by gas phase polymerization. 
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Figure 1. A sketch shows areas of study explored in this 
dissertation.  
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Figure 2. A schematic shows different aspects and uses of 
the electric field effect on charged nanoparticles prepared 
in the vapor phase by laser vaporization. 
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Chapter 2 Homogeneous Nucleation of Single Component 
 

2-1 Introduction 
 

Nucleation is an important phenomenon in science and technology. It plays a crucial 

role in aerosol and cloud formation, in materials science,1,2,21 as well as in production and 

purification of chemicals and pharmaceuticals.22 The study of homogeneous nucleation 

processes of supersaturated vapors to liquids has become of interest. This interest has 

stimulated many experimental and theoretical developments over the last decade.3,4 To 

extend the current level of understanding of homogeneous nucleation, different models 

have been developed to gain a better understanding of the experimental results.23-25 

The approach taken in this study was to measure the critical supersaturations of 

2,2,2-trifluoroethanol (TFE), and then to compare the experimental results obtained with 

the theoretical predictions of different models. Critical supersaturation (Scr) is defined as 

the ratio of actual partial pressure of the vapor to the equilibrium vapor pressure of the 

bulk liquid that is required for the onset of nucleation at a rate of 1-3 drop/cm3/s. The 

onset of nucleation of many substances is well predicted by the classical theory, however, 

the agreement between the predictions by classical nucleation theory (CNT) and 

experimental data is not comparable for all substances.26-28 For substances such as highly 

polar liquids, deviation from the theory is very significant.28 The deviation from the CNT 
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predictions led many scientists to develop new theories and proposals for the nucleation 

mechanism. Among these theories are the scaled models that provide useful ways to 

correlate the experimental data of a series of different materials with their molecular 

properties. Two scaling models were used in this study; the corresponding states 

approach, which was developed by McGraw to predict the nucleation properties of 

different substances under constant reduced nucleation barrier height,25 and the scaled 

model, which was developed by Hale to predict the critical supersaturation and 

nucleation rates.23,24 

TFE is a fluoroalcohol widely used in biomedical applications, especially in 

determining protein folding and denaturation mechanisms where it is known to stabilize 

the α-helical structure in proteins.5,6 Recent studies have suggested that TFE, at low 

concentrations in the vapor phase, exhibits surfactant properties by essentially reducing 

the surface tension of organic and inorganic liquids.7 More recently, El-Shall and 

coworkers used TFE as a nucleating agent in supersaturated vapors of different alcohols.8 

They have reported that the addition of TFE traces to supersaturated vapor of ethanol 

leads to a significant enhancement in the ethanol nucleation rate by about four orders of 

magnitude. They explained this effect by the surface enrichment phenomenon where the 

surface composition of the nucleating cluster becomes enriched with the low surface 

tension component (TFE). As a result, the surface tension of the nucleating cluster would 

decrease, and hence the nucleation barrier would significantly decrease, leading to a high 

rate of nucleation.8 In spite of its important applications, either when it is in the liquid or 
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the vapor phase, the homogeneous nucleation of TFE, to the best of our knowledge, has 

never been studied before. 

The research presented in this chapter involves the study of the homogeneous 

nucleation of TFE using the diffusion cloud chamber. Specifically, the measurments of 

the critical supersaturations will be presented and compared with three different models. 

These models are the classical nucleation theory, the corresponding state model, and the 

scaling model. 
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2-2 Classical Nucleation Theory 
 

The history of the nucleation theory goes back to J. Willard Gibbs (1876-1878) 

who developed the thermodynamic theory of curved surfaces. In 1926, Volmer and 

Weber argued that the nucleation rate was proportional to an exponential term that 

included the energy barrier for nucleation. However, they did not determine the pre-

exponential factor. In 1927, Farkas started to develop a kinetic approach to vapor-liquid 

phase transition. The work by Becker-Doring (1935), Zeldovich (1943) and Frenkel 

(1946) developed the so-called “classical nucleation theory (CNT)”. The CNT theory 

adopted two major approximations. First, it was assumed that the macroscopic 

thermodynamic properties of bulk substance are equal to the microscopic properties of a 

cluster for the same substance. For example, the surface tension of a bulk, planer liquid 

was assumed to be the same as the surface tension of a small spherical cluster (i.e. 

100≈n ) in a supersaturated vapor. The latter assumption has caused a great deal of 

controversy. Secondly, a steady state distribution of clusters was assumed. 

When a liquid is heated under well-defined temperature and pressure, its vapor 

pressure ( P ) can exceed its equilibrium vapor pressure ( eP ). In this case, the vapor is 

known to be “supersaturated”. Thermodynamically, this vapor is in a metastable state and 

can be easily condensed back to liquid through homogeneous nucleation. In 

homogeneous nucleation, supersaturated vapor, which is composed of a broad cluster-

size distribution, starts to nucleate once a cluster reachs a critical size. The Gibbs free 

energy change during the nucleation process is defined as: 
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PVTSUG +−=   Eq. 2-1 

A very small change in Gibbs free energy is given by: 

VdPPdVSdTTdSdUdG ++−−=   Eq. 2-2 

The change in the internal energy (U ) is given by: 

ii dNPdVTdSdU µ+−=   Eq. 2-3 

From the above equations (2-2 and 2-3), the change in Gibbs free energy is given by: 

ii dNSdTVdPdG µ+−=   Eq. 2-4 

At constant T and P, the metastable vapor starts to condense and a new energy 

term must be considered. This term, the surface free energy term, will account for the 

formation of a new interface between the newly formed cluster (droplet) and the 

supersaturated vapor. If we consider a system that contains ( VN ) molecules at a constant 

temperature (T) and a constant pressure (P), then the free energy of formation of a 

nucleus of surface area (A), containing (n) molecules, can be obtained by integrating over 

the cluster area as well as the number of molecules in the system, which is given by: 

∫∫∫ ∫
−

++=
nN

N
VV

n

l

A V

V

dNdndAdG µµσ   Eq. 2-5 

The above equation (2-5) can be written as two terms: 

AnG Vl σµµ +−=∆ )(   Eq. 2-6 

The first term (left) is due to the bulk contribution and is given by the change in the 

chemical potential per molecule between the liquid and the supersaturated vapor 

multiplied by number of molecules in the cluster (n). This term is a negative term since 

the chemical potential of the liquid is always less than that of the supersaturated vapor 
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phase due to stability of the liquid over the supersaturated vapor. The second term is a 

negative term due to the surface contribution. This term accounts for the energy required 

to create a new interface between the formed cluster and the supersaturated vapor. It is 

given by the surface free energy per molecule (σ ) multiplied by the surface area of the 

cluster (A). The bulk contribution (free energy BulkG∆  term) at constant T can also be 

written as: 

SlnnKTdP
P
1nkTVdPG

Pe

P

Pe

P
Bulk −===∆ ∫ ∫   Eq. 2-7 

where, S is the supersaturation ratio of the vapor, given as 
eP

PS = . 

The change in free energy becomes: 

ASlnnkTG σ+−=∆   Eq. 2-8 

If we assume spherical nuclei, we can write the free energy of formation of this nucleus 

as a function of its radius (r): 

σπ
ρ

π 23 4ln))(
3
4()( rSRT

M
rrG +−=∆

  Eq. 2-9 

where, ρ  is the bulk density, σ  is the surface energy per molecule for the bulk material, 

and M is the molecular weight. By using the relationship between the number of 

molecules per cluster (n) and the radius of cluster (r), which is given by: 

AN
nMr
ρ

π =3

3
4

  Eq. 2-10 

The free energy can be also written as a function of the number of molecules per nucleus 

(n) as: 
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3/23/2 n)
4
V3(4SlnnkT)n(G
π

πσ+−=∆   Eq. 2-11 

 

It is clear from the previous equations that for small cluster radii the surface 

energy term will dominate the free energy of formation, but for large clusters the bulk 

energy term will be dominant. By plotting the free energy of formation as a function of 

the number of molecules in a cluster (n) at a constant T and P, the free energy would 

increase until it reaches a maximum value, corresponding to the critical cluster size 

(nucleus n*), it then decreases rapidly. The critical size can be determined by equating 

the first derivative of (∆G) with respect to n to zero,( i.e: 0)
dn

Gd( *nn
=

∆
=

), then solving 

for (n). 

3

23

)SlnkT(

)
4
V3()

3
8(

*n π
πσ

=   Eq. 2-12 

Based on the above equation, the critical number of molecules (n*) required to 

start the condensation process (followed by a cluster growth to a macro-size droplet) 

depends on the vapor supersaturation and the temperature. The more supersaturated the 

vapor is, the smaller the size of the nucleus required to start the nucleation, and the lower 

the energy barrier needed, according to the theory. The critical cluster size (n*) depends 

on the surface tension of the liquid under investigation in a directly proportional way. 

The free energy barrier required to start the homogeneous nucleation process can be 

determined by plugging in (n*) into (Eq. 1-12), as: 
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2

23

)SlnkT(3
V16*G πσ

=∆   Eq. 2-13 

In a supersaturated vapor, as mentioned before, there is a broad distribution of 

clusters of different sizes. Among these clusters are (n*) sized clusters with the highest 

energy of formation ( *G∆ ). The formation of an (n*) sized cluster in a supersaturated 

vapor is a prerequisite for the onset of a first order phase transition. Actually, none of the 

sub critical nuclei (with n < n*) can grow spontaneously due to the fact that this growth 

is accompanied by an increase in the free energy of formation ( G∆ ), while for the 

supercritical nuclei (with n > n*), the clusters can grow spontaneously due to the fact that 

this growth is accompanied by a decrease in the free energy of formation ( G∆ ). In 

conclusion, the driving force for the occurrence of the first order phase transition of a 

supersaturated vapor is the ability to overcome the energy barrier between a metastable 

and a truly stable state, by thermal fluctuation. Once that happens, a phase transition 

takes place. Thermal fluctuation is the only process that takes the small cluster (with n < 

n*) up the hill through evaporation-condensation processes. By assuming a steady state 

condition, the CNT prediction for the rate of homogeneous nucleation J is given by: 

( )kTGexpKJ ∗∆−=   Eq. 2-14 

Where (k) is the Boltzmann constant, (T) is the temperature, and (∆G*) is the Gibbs free 

energy of nucleus formation. The pre-exponential factor K is calculated from: 

( ) ( ) ρπσ= 2212 kTPNMK A   Eq. 2-15 

Where (ρ) is the liquid density, (NA)is Avogadro's number, (σ) is the flat surface tension of 

the liquid, (M) is the molecular weight, and (P) is the pressure of the vapor. By setting J = 1 
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and using the literature values of the equilibrium vapor pressure, the liquid density, and the 

surface tension, the critical supersaturation can be predicted. 
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2-3. Experimental 
 

The critical supersaturation of TFE was measured using the upward thermal 

diffusion cloud chamber (DCC). A detailed description of this chamber is in the 

literature.29-31 Only a brief description is given here; the chamber consisted of two 

aluminum circular plates separated by a glass ring. Circulating fluids (methanol and 

silicon oil) were used to control the temperatures of the top and bottom plates such that 

the top plate was maintained at a lower temperature compared to the bottom plate. The 

bottom plate was covered by a very shallow pool, about (1-2 mm height), of the TFE 

liquid (75 ml, Aldrich NMR grade, 99.5+ %). By applying a temperature difference 

between the top and the bottom plates, vapor started to evaporate from the surface of the 

pool, diffused upward through a noncondensable gas (Helium), and condensed on the 

cold top plate to form a thin film of liquid. The condensed liquid returned to the liquid 

pool by flowing along the chamber walls. The experimental setup sketch is shown in 

Figure 3. 

By knowing the temperature of the liquid pool, the temperature of the top plate, 

and the total pressure inside the chamber, the partial pressure, temperature, density and 

supersaturation profiles could be calculated by solving the mass and heat transfer 

equations inside the chamber.30 For example, the chamber profiles for supersaturated 

trifluoroethanol vapor at (T0 = 305 K, T1 = 267 K and Ptotal = 700 Torr) are given in 

Figure 4, where To is the temperature of the surface of the liquid pool, T1 is the 

temperature of the top plate, and Pt is the total pressure inside the chamber. The 
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supersaturation reaches a maximum at about 0.7 reduced height (nucleation zone) inside 

the chamber. 

The critical supersaturation was measured by varying the temperature difference 

between the chamber plates until a nucleation rate (1-2 drops cm-3 s-1) was achieved. The 

onset of nucleation was determined by observing the forward scattering of light from 

drops falling through a horizontal sheet of He-Ne laser beam positioned near the middle 

of the chamber. Using a photomultiplier that is connected with discriminating and 

counting electronics, the number of drops within a well-defined volume was measured. 

An electric field of 65 V/cm was used between the top and bottom plate to remove any 

unwanted ions resulting from cosmic rays or natural radioactive sources, so that they 

would not cause interference during the homogeneous nucleation measurements. 
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2-4 Results and Discussion 
 

The chamber parameters, namely To, the surface temperature of the liquid pool, 

T1, the upper plate temperature and Pt, the total pressure required to obtain a nucleation 

rate of 1-3 drops cm-3 s-1 were listed for each experiment in Table 1. Two stability 

criteria, the pressure Pt/P0 ratio and density ρ1/ρ0 ratio for each experiment, are also 

shown in Table 1 where P0 is the equilibrium vapor pressure at T0, and ρ1 and ρ0 are the 

total densities of the vapor-He gas mixture at T1 and T0, respectively. The first stability 

condition of the chamber is satisfied by the relation:32 

)T/T(1
)M/M(1

P/P
10

gw
0t −

−
<<   Eq. 2-16 

Mw and Mg are the molecular weights of the working fluid (TFE) and carrier gas (He), 

respectively. At lower pressure ratios (less than 2.5), the supersaturation depends on the 

amount of the carrier gas used,32 though at higher-pressure ratios convection in the 

chamber could take place. In all the experiments reported in Table 1, we do not observe 

any visual convection in the chamber, and the (1-Mw/Mg) / (1-To/T1) ratio ranges from 

147-160. The second stability criterion was the density ratio (ρ1/ρ0), which is always less 

than 0.4 (insuring the absence of any convection inside the chamber). 

The thermophysical properties needed to calculate the temperature and partial 

pressure profiles in the chamber for 2,2,2-trifluoroethanol are given in Table 2. Using the 

data in Table 1 together with the physical properties in Table 2, the solutions of the heat 

and mass flux equations30 yield the dependence of supersaturation on elevation inside the 

chamber for each experiment. 
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The critical supersaturations of TFE were measured within the temperature range 

of 266 K to 296 K. Figure 5 shows the dependence of the critical supersaturation on the 

temperature for TFE. The predictions of the CNT are also shown in Figure 5 as a solid 

curve. A good agreement was observed between the experimental results and the theory 

over the entire temperature range. In spite of its approximate nature, the CNT has 

predicted the critical supersaturations required for homogeneous nucleation for a large 

variety of simple substances such as n-alkanes,30 alcohols,33 alkyl benzenes34 and 

halogenated methane and ethane.35 However, in some cases, the theory prediction 

deviates from the experimental results. For example, the theory failed to predict the 

critical supersaturations for associated,26,27 highly polar,28 and hydrogen bonded36 vapors. 

The CNT has provided a significant progress in qualitatively understanding the factors 

that control the formation of a new phase. However, it failed to provide a consistent 

molecular picture of the nucleation process. For instance, various molecular interactions 

within the nucleating clusters, such as hydrogen bonding and dipole-dipole, were not 

included in the CNT formalism. 

The corresponding states correlation, derived by McGraw25, was applied in this 

study in order to compare the nucleation behavior (critical supersaturations) of TFE with 

that of simple fluids in a dimensionless form. In this approach, the maximum free energy 

of nucleation (W*) is expressed as: 

2
r

*
)S)(logT(G3.282kT

W −=  Eq. 2-17 

and: 
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  Eq. 2-18 

where Tr, is the reduced temperature (= T/Tc) and Tc is the critical temperature. The 

barrier height given in Eq. 2-17 is based on Guggenheim’s empirical correlations of the 

surface tension and the number density of heavier rare gases. Therefore, it is a good 

approximation for the reduced barrier height of simple fluids. McGraw found that for 

simple fluids, the energy barrier for nucleation rate near unity lies between 50 and 70 kT. 

Figure 6 shows the experimental critical supersaturation plotted as a function of reduced 

temperature. The solid and the dashed curves represent the upper and lower boundaries 

for simple fluids, at 50 and 70 kT, respectively, calculated from Eq. 2-17. It is clear that 

the TFE nucleation behavior is slightly deviated from that of a simple fluid. This 

deviation could also be discussed in terms of Pitzer’s accentric parameter, (ω = -log Pr (Tr 

= 0.7) – 1)37, which is a measure for the increase in the entropy of vaporization over that 

for a simple fluid. The value of ω for TFE is 0.6372, while for simple fluids, like Ar, it is 

almost zero. 

One of the limitations of the classical nucleation theory was the availability of the 

experimental physical constants for the fluid under investigation, such as the vapor 

pressure and the surface tension in order to calculate the critical supersaturation correctly. 

Hale23,24 was able to scale the CNT into a material independent by utilizing the critical 

point quantities. The scaling law for the critical supersaturation is given by: 

2/3
cc ])1)T/T[((53.0Sln −Ω=   Eq. 2-19 
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Where Ω is the excess surface entropy per molecule in the cluster. The bulk liquid value 

for Ω is approximated by the Eotvos constant, Ke, which is defined by: 

)TT(
)/M(K1kN

c

3/2
e

3/2
A −

σ
ρ=≈Ω   Eq. 2-20 

since kNA
2/3 is approximately equal to one. NA, M, ρ and σ are Avogadro’s number, 

molecular weight, liquid density, and surface tension of the liquid. The excess surface 

entropy Ω can also be calculated from the temperature dependence of the surface energy 

according to the following equation: 

)kn/(
T

2 3/2







∂
σ∂

−=Ω   Eq. 2-21 

Where n is the liquid number density. 

The critical supersaturation was calculated using the values of Ω given in Eq. (21 

and 22) as a function of temperature to demonstrate the predictive ability of the scaling 

law. The results are shown in Figure 7 where the solid and the dashed curves represent 

the critical supersaturation calculated from Eq.2-19 using Ω1 and Ω2, respectively. It is 

clear from this figure that using Ω1, the calculated supersaturation matched the 

experimental values. On the other hand, using Ω2 resulted in a large discrepancy between 

calculated and experimental results. It is also worth mentioning that the agreement 

between the experimental and calculated critical supersaturation extends throughout the 

entire temperature range studied. The experimental data were also plotted as ln Sc/Ω3/2 vs. 

[(Tc/T)-1]3/2 as shown in Figure 8, where the solid line in the graph represents the 
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prediction of the scaling model. It was clear that Hale’s model allowed for as accurate a 

prediction of the threshold of nucleation of TFE as the CNT did. 

Additionally, the measured supersaturation could be used to estimate the critical 

temperature (Tc) of the TFE by rearranging Eq. 2-19 and replotting the experimental data 

as (ln Sc)2/3 vs. 1/T. The results are shown in Figure 9, where the solid line represents the 

linear fit. The estimated Tc can be obtained by dividing the slope over the intercept of the 

least-square-fit line. The estimated Tc value is 505.26 K, which is about 1% higher than 

the experimental value (499.29 K).38 
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Figure 3. Schematic for the upward diffusion cloud chamber 
(DCC) used to measure the vapor to liquid nucleation for 
trifluoroethanol. 
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Figure 4. Temperature, total vapor density, equilibrium 
vapor pressure, partial pressure and supersaturation 
profiles calculated for the observed nucleation of 1-3 drops 
cm-3 sec-1 for trifluoroethanol at To=305 K, T1=267 K and 
Pt=700 Torr. 
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Table 1. Measured data for each experiment for 2,2,2-
trifluoroethanol. T0, the temperature of the pool surface in 
Kelvin; T1, the temperature of the top plate in Kelvin; Pt, 
the total pressure in Torr; Pt/P0, the pressure ratio; and 
ρ1/ρ0 the density ratio. P0 is the equilibrium vapor pressure 
of the working fluid at T0; ρ1 and ρ0 are the total density of 
the vapor-carrier gas mixture at T1 and T0, respectively.  

Experiment 
Number 

To 
(K) 

T1  
(K) 

Pt 
(Torr) Pt/P0 ρ1/ρ0 

1 295.83 254.38 656.6 10.486 0.38527 
2 296 254.33 621.1 9.819 0.37005 
3 298.45 256.73 655.2 8.965 0.35236 
4 300.05 258.38 638.8 7.967 0.32965 
5 300.23 258.45 638.9 7.886 0.3275 
6 300.37 258.55 675.7 8.273 0.33724 
7 300.48 258.83 676.6 8.232 0.33681 
8 300.63 258.65 676.8 8.164 0.33438 
9 304.23 262.45 657.9 6.477 0.2949 
10 304.42 262.52 658.8 6.418 0.2931 
11 305.38 263.62 701.4 6.479 0.29646 
12 307.98 266.25 676.65 5.425 0.27016 
13 308.42 266.65 708.1 5.544 0.27406 
14 308.42 266.77 708.4 5.547 0.27461 
15 308.65 266.65 681.7 5.272 0.26554 
16 309.92 267.95 726.8 5.253 0.26683 
17 312.08 269.93 700.4 4.518 0.24704 
18 312.97 270.85 708.5 4.364 0.24372 
19 314.4 272.37 756.4 4.328 0.24517 
20 314.53 272.27 756.1 4.298 0.24337 
21 314.58 272.4 756.55 4.29 0.24355 
22 316.22 274.23 730.05 3.809 0.23183 
23 316.25 274.23 730.2 3.804 0.23157 
24 316.85 274.85 737.2 3.726 0.23014 
25 316.98 274.57 737.15 3.702 0.22756 
26 317.53 275.7 767.8 3.751 0.23288 
27 317.62 275.73 768.25 3.736 0.23226 
28 319.17 277.02 792.7 3.57 0.22815 
29 319.87 278.67 762.7 3.319 0.22622 
30 323.9 281.45 835.4 2.993 0.21566 
31 325.18 282.55 843.2 2.844 0.21192 
32 326.8 284.35 853.8 2.67 0.20997 
33 328.45 285.68 884.15 2.563 0.20748 
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34 328.47 285.7 883.3 2.558 0.20735 



www.manaraa.com

28 

 

Table 2. Thermophysical properties of 2,2,2-trifluoroethanol and helium. 
 

2,2,2-trifluoroethanol 

M = 104.04, Tc
a = 499.29, Pc

a = 4.8606, Tb
b =347.04 

D12
c
 = 0.272702, ∆Hvap

d = 43.97 
de = 10-3(2531.269 - 8.5439 T+2.42742 × 10-2 T2 – 2.865 × 10-5 T3) 

i)
T
T1(a

T
T

P
P

ln
c

4

1i
i

c

c

e ν

=

−= ∑  

where, a1=-8.895557585, a2=2.762807991, a3=-3.310311526, a4=-4.676431484 
ν1=1.0, ν2=1.5, ν3=2.0, ν4=3.0 a 

 
σf = 21.04673586[(1- T/Tc) / 0.4]0.86253227 
Cpg = 22.571 + 0.31363×T – 2.2228 × 10-4 T2 + 5.7401 × 10-8 T3  
ηh = 1.3086 × 10-5 T1.5/(T+291.1316) 
λi = 2.914138 × 10-7 + 1.135173 × 10-5 T + 7.9895572.× 10-8 T2 + 3.232073 × 10-13 T3 
 
 

Helium 
 

M = 4.006 
η = 1.455E-5×T1.5/(T+74.1) 
λ = 7.37697E-5 + 1.139222E-6×T + 6.343536E-10×T2 

Values of M, molecular weight in g/mol; Tc, critical temperature in K; Pc, critical pressure in MPa; Tb, 
normal boiling point in K; D12, binary diffusion coefficient at 273 K and 101.3 kPa; ∆Hvap, the enthalpy of 
vaporization at the normal boiling point in kJ mol-1; d, the density of the liquid in g/cm3; Pe, the equilibrium 
vapor pressure in Pa; σ, the surface tension in dyn/cm; Cp, the isobaric heat capacity of the vapor in J/mol 
K; η, the viscosity of the vapor in poise; λ, the thermal conductivity of the vapor in J/(m s K). T= 
temperature in K, t = temperature in °C. 
 

aReference 38 
bReference 39 
cReference 40 
dReference 41 
eReference 42 
fCalculated using Riedel correlation method, reference43 
gReference 44 
hCalculated using Reichenberg estimation, reference43 
iCalculated using Roy and Thodus method, reference43 
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Figure 5. Critical supersaturation vs. temperature for 
2,2,2-trifluoroethanol, the solid line represents the 
classical nucleation theory prediction. 
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Figure 6. Critical supersaturation vs. reduced temperature 
for 2,2,2-trifluoroethanol. The upper solid and lower dashed 
curves are for simple fluids and represent barrier heights 
of 50 and 70 kT, respectively. 
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Figure 7. Critical supersaturation vs. temperature for 
2,2,2-trifluoroethanol (solid squares). The prediction from 
the scaling law using Ω1 and Ω2 are presented as solid and 
dotted curves, respectively. 
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from the scaling model. 
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Chapter 3 Nanoparticle Formation from the Vapor Phase 
 

 

3-1 Outline  
 

This chapter deals with the formation and characterization of several nanoparticle 

systems. The laser vaporization controlled condensation (LVCC) method was used to 

prepare size-selected nanoparticles, intermetallic alloy nanoparticles, and nanoassemblies 

of filaments and tree-like structures. 

This chapter is divided into five parts. Described in part I is the experimental 

method used (LVCC) in the preparation of nanoparticles from the vapor phase. In part II, 

the preparation and characterization of nickel and iron aluminide intermetallic 

nanoparticles, prepared by laser vaporization, are presented. The findings indicate that 

metallic alloying in the vapor phase using the LVCC method is a promising technique to 

prepare binary alloy systems, and it could be used for multicomponent systems as well. In 

part III, the preparation and characterization of size-selected nanoparticles from the vapor 

phase are discribed. In this part the LVCC capabilities have been enhanced, by coupling 

it to a Differential Mobility Analyzer (DMA). The LVCC chamber was set to operate 

under a gas flow mode, rather than a static pressure mode, to classify particles according 

to their electrical mobility. The particle size-distributions were also obtained by coupling 

the DMA to a Faraday cup electrometer. Discussed in part IV, are the preparation and 
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characterization of a class of nanoparticle assemblies that were obtained by operating the 

LVCC chamber under the influence of an electric field. These assemblies were prepared 

with a potential difference applied between the top and bottom plates (electrodes) of the 

chamber. Several experiments were carried out to understand this phenomenon. In part V, 

a unique method to prepare and to study the optical properties of Ag-Au alloy 

nanoparticles, prepared in the vapor phase, is presented. The interaction between as-

prepared Ag-Au nanoparticles and the laser light generated by the fundamental (1064 

nm) and the second harmonic (532 nm) wavelengths of a pulsed Nd:YAG laser were also 

studied. Shown in Figure 10, are the different topics covered in this chapter. 
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Figure 10. Schematic illustration of the uses of the LVCC 
method in this chapter. 



www.manaraa.com

37 

 

3-2 Experimental Methods 
 

Laser vaporization controlled condensation technique (LVCC) was used to 

prepare a wide variety of materials such as metallic,11 semiconductor,12,13 and 

intermetallic45,46 nanoparticles. This method is based on coupling laser vaporization of 

metals with controlled condensation from the vapor phase. The experimental setup is 

shown in Figure 11. This setup consists of a modified upward thermal diffusion cloud 

chamber (DCC). The detailed description of the chamber can be found elsewhere.45-47 

The chamber consists of two horizontal stainless steel plates separated by a circular 

quartz ring. A target, which can be made of a pure metal or a mixture of metallic 

powders, is placed at the center of the bottom plate of the chamber. The target was 

vaporized by the second harmonic generation of a pulsed nano-second Nd:YAG laser 

(Quanta-Ray, Spectra-Physics) with 532 nm, 70-250 mJ/pulse (about 107-109 W/cm2) and 

2-5 ns pulse width, under well-defined condition of pressure and temperature. 

Immediately after the laser beam hits the target, a shock wave was initiated by the 

collisions between the gas and the target atoms and a plume is emitted.48 The evaporated 

metal atoms collide with the inert gas atoms at the front of the expanding plume. As a 

result, plume atoms rapidly thermalize in 10-100 microseconds after the laser pulse.49 

The degree of thermalization required for condensation is related to the vapor pressure of 

the target material and the efficiency of the energy transfer during gas-target atom 

collision depends on their atomic masses. The cooling plume confined behind the shock 

wave becomes supersaturated, leading to nanoparticles formation via homogeneous 

nucleation. 
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Typically the chamber was filled with a pure carrier gas (He or Ar 99.999 %) or 

with a gas mixture of inert and reactant gases (O2 in the case of oxide). The pressure was 

fixed in all experiments at about 1000 Torr. A temperature gradient (60-70 °C) was 

applied to the chamber by keeping the top plate at a lower temperature (room 

temperature) while the bottom plate at a higher temperature (90 °C). The temperature 

gradient, as well as the high static pressure inside the chamber helped in creating a steady 

state convection current which carried the generated nanoparticles to the top plate, where 

particles deposit. The higher the convection rate inside the chamber, the faster the particle 

can be removed from the nucleating zone (plume generated by the laser) and the smaller 

the average particle size distribution. After each run the chamber is brought to room 

temperature before the sample can be collected. 

Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy 

(EDX) and scanning transmission electron microscopy (STEM) were carried out using a 

Quantum DS-130S Dual Stage Electron Microscope. A carbon substrate was placed 

inside the chamber (on the top plate) to observe the as-deposited particles under the SEM. 

The electron diffraction (ED) and the transmission electron microscope (TEM) images 

were obtained using a JOEL JEM-FXII TEM operated at 200kV. High- resolution TEM 

(HRTEM) images were obtained using a JOEL 4000EX operated at 400 kV. Typically, a 

drop of methanol-dispersed nanoparticles was placed on a carbon-coated copper grid, and 

left to dry in a desiccator. The crystallinity and the phase measurements of the prepared 

nanoparticles were analyzed using X-ray powder diffraction (XRD) on an X’Pert Philips 

Materials Research Diffractometer, with Cu Kα radiation. The elemental analyses were 
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done using inductively coupled plasma with an optical emission spectrometer (ICP-OES) 

by Varian VISTA-MPX instruments. Size-selected particles and equilibrium particle size 

distribution were prepared and measured by low-pressure differential mobility analyzer 

(LP-DMA) with a Faraday cup electrometer, coupled with the pulsed laser ablation 

system. The UV-Vis absorption was done on a Hewlett-Packard HP 8453 diode array 

spectrometer with a quartz cell of 1 x 1 x 4 cm3. The laser power was measured using 

OPHIR optronics LTD., NOVA laser power monitor. 
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Figure 11. Experimental set-up for the Laser Vaporization 
Controlled Condensation method (LVCC). 
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3-3 Transition Metal Aluminides 
 

3-3-1 Introduction 
 

Intermetallic aluminides of nickel and iron alloys have many important 

applications, especially for high-temperature structural applications due to their high 

melting points and thermal conductivity. These materials are further characterized by a 

low density, a high strength to weight ratio, and a corrosion and oxidation resistance 

especially at high temperatures.50 However, their poor room-temperature ductility and 

low high-temperature strength limit their usage.51 Interestingly, nanoparticles prepared 

from these materials were proposed to overcome the bulk materials limitations. For 

example, iron aluminide and nickel aluminide nanoparticles exhibit room-temperature 

ductility and superplasticity.52,53 Different techniques were used to prepare 

nanocrystalline iron and nickel aluminides. El-Shall and coworkers45,46,54 prepared iron 

aluminide nanocrystals in the vapor phase from a bulk iron aluminide target using the 

laser vaporization controlled condensation method (LVCC). He and Ma55 have used the 

mechanical alloying technique to prepare Fe3Al and Ni3Al nanoparticles that involved 

high-energy ball milling of a mixture of iron or nickel powder, with aluminum metal 

powder, with a specific composition. Iron aluminide nanoparticles have also been 

synthesized by hydrogen plasma-metal reaction56,57, where an arc-melting technique was 

used to vaporize Fe-Al ingots in the presence of (50/50 Ar/H2 by volume) gas mixture. 

Haber et al.,58 synthesised nickel aluminide nanoparticles by chemical reduction. Another 
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method, a self propagating high temperature synthesis (SHS), was reported by Dong et al. 

to prepare NiAl nanoparticles.59,60 
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3-3-2 Experimental 
 

Aluminum (99.5%) and nickel (99.8%) metal powder (15-44 µm) were purchased 

from Alfa Aesar. Iron metal powder (99.9+ %) and (< 44 µm) was purchased from 

Aldrich. In these experiments, a micron-sized powder of aluminum metal was mixed with 

the nickel or iron metal powder in specific molar ratio using a mortar and a pestle. The 

mixture was then pressed at 500 MPa, using a hydraulic press, in order to shape it into an 

ingot (target).  

The LVCC method, described in (section 3-2), was used to vaporize the metal 

ingots. The pressure and the temperature gradients inside the chamber were adjusted to 

1000 Torr helium and 60 °C, respectively. The target was placed on the bottom plate of 

the chamber and vaporized by a second harmonic generation beam (532 nm, 250 

mJ/pulse), of a pulsed Nd:YAG laser (Quanta-Ray, Spectra-Physics), operated at 30 Hz 

and 2 ns pulse width. The laser beam was focused on the target using a lens (focal length 

50 cm). The cross-section area of the beam was measured on the target as (0.031 cm2). 

Four different Ni-Al ingots with 75.0, 50.0, 25.0 and 10.0 atomic % Ni were 

prepared. The elemental analyses for the prepared nanoparticles from the above ingots 

were determined using the inductive coupled plasma spectroscopy (ICP). For the Fe-Al 

system, six different nanopowder samples were prepared from the corresponding bulk 

powder mixtures of (75, 50, 33, 28, 25, and 10 atomic % Fe). Pure Ni, Al and Fe 

nanoparticles were prepared as well, from bulk metals as reference materials, under the 

same experimental conditions of temperature gradient, pressure, and laser power in the 
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LVCC chamber. Shown in Figure 12 is a schematic diagram on how intermetallic 

nanoparticles were prepared in the vapor phase by the LVCC method. 
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3-3-3 Results and Discussion 
 

A comparison of the Ni content in the bulk ingot to that in the corresponding 

nanoparticles prepared is given in Table 3. For the metallic powder-mixtures, containing 

75.0, 50.0, 25.0 and 10.0 atomic % Ni, there are 40.84, 31.25, 15.51 and 6.69 atomic % 

Ni, respectively, in the nanoparticles. It is obvious that the Ni content in the nanoparticles 

is always less than in the bulk powder mixtures. In fact, the Ni content in Ni-Al 

nanoparticles is about 45-33 % of those in the bulk metal-powder mixtures. This finding 

can be explained by considering the evaporation rate of pure Al into vapor, which is 

higher than pure Ni since Al metal has a higher vapor pressure and a lower enthalpy of 

vaporization compared to that of Ni metal.61 Similar results have been reported by Liu 

and co-workers,57,62 who studied the preparation of Fe-Al nanoparticles by hydrogen 

plasma-metal reaction from bulk alloy. They have found that the Al content in the 

nanoparticles was greater than that in the bulk alloy. They also explained this result in 

terms of differences in evaporation rate for the pure metals. 

Shown in Figure 13 are the SEM images of NiAl intermetallic nanoparticles 

prepared from a powder mixture with 51.76 atomic % Ni. A typical web-like structure 

morphology was observed, similar to what has been observed for pure Ni and Fe 

nanoparticles shown in Figure 14 and Figure 15, respectively. The deposited particles 

were highly porous with a large surface area based on the SEM micrographs, which could 

make these particles suitable for catalytic applications. The average pore-size diameter 

was estimated from SEM to be 0.8 and 3.9 µm for Ni and Fe nanoparticles, respectively. 
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The x-ray diffraction patterns for nanopowders prepared from pure Ni and Al 

targets are shown in Figure 16-(b, c). The XRD patterns for Ni and Al nanoparticles have 

four strong lines assigned to reflections from the 111, 200, 220 and 311 planes at 

scattering angles of 44.49, 51.81, 76.41 and 92.89, respectively for Ni and 38.47, 44.71, 

65.09 and 78.21, respectively for Al. The lattice constant, assuming a cubic unit cell, for 

Ni and Al nanoparticles were calculated to be 3.5242 and 4.0495, compared to 3.523 and 

4.0494 for bulk materials, respectively. The XRD data for nanoparticles sample obtained 

following ablation of powder Ni-Al mixture with (51.76 atomic % Ni) is shown in Figure 

16 a. The XRD pattern does not match any of the XRD peaks of pure Ni or Al 

nanoparticles. However, it matches the diffraction pattern of bulk Ni0.58Al0.42 alloy 68, 

which means that NiAl intermetallic nanoparticles were formed in the vapor phase using 

the LVCC method. Based on the XRD diffraction patterns, neither Ni nor Al peaks were 

present in the spectrum pattern of the prepared intermetallic nanocrystals (NiAl), 

indicating that the product was not a metallic mixture. The strong diffraction lines at the 

scattering angles of 31.11, 44.63, 64.97 and 82.27 were assigned to the diffraction from 

100, 110, 200 and 211 planes, respectively, of a B2 crystal structure of NiAl. The 

calculated lattice parameter for NiAl nanoparticles (2.868) is in good agreement with 

bulk lattice parameter (2.871). Shown in Figure 17 are the XRD patterns of nanoparticle 

samples prepared from metallic powder mixtures with (75.0, 50.0, 25.0 and 10.0 atomic 

% Ni) labeled as a, b, c and d, respectively, in the graph. A mixture of Ni and Al 

nanoparticles, as the major product, were prepared from the vaporization of a powder 

mixture with (75 atomic % Ni), as identified from the XRD pattern compared to database 
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patterns of pure Ni and Al metals. When the molar percentage of Ni was decreased to 50 

atomic % in the metal ingot, intermetallic alloy nanoparticles (NiAl) of Ni and Al metals 

were obtained, and the absence of pure Ni and/or Al nanoparticles was evident. The 

intermetallic alloy nanoparticles were assigned to Ni0.9Al1.1 as identified from the XRD 

spectrum; the diffraction pattern matched (Ni0.9Al1.1) bulk alloy. A mixture of pure Al 

and intermetallic Ni0.9Al1.1 nanoparticles was obtained when ingots with 25.0 and 10 

atomic % Ni were vaporized in the LVCC chamber. Based on the XRD data, a mixture 

with more Al nanoparticles were obtained from a sample prepared from 10.0 atomic % 

Ni target compared to that prepared from a 25.0 atomic % Ni target. It is evident that only 

one intermetallic phase was obtained, (NiAl) nanoparticles. However, by increasing the 

molar ratio of Al or Ni content, alloy nanoparticles, in addition to the pure component, 

(depending on which metal is in excess) were obtained. This result may be due to the 

greater stability of the NiAl phase compared to other nickel aluminide phases like NiAl3, 

Ni2Al3 and Ni3Al, where NiAl has the highest heat of formation.60,63 

Similar results have been obtained for the Fe-Al system. Fe-Al intermetallic 

nanoparticles were also prepared by the LVCC method using metallic powder mixtures of 

Fe and Al. Six different nanopowder samples were prepared from bulk powder mixtures 

with (75, 50, 33, 28, 25 and 10 atomic % Fe). Shown in Figure 18 are the scanning 

electron microscope images for the as-deposited particles along with the energy 

dispersive spectra (EDX) for three different nanoparticle compositions prepared from 

FeAl3, FeAl, and Fe3Al, respectively. It is clear that the nano-deposited materials are 

highly porous with a web like structure morphologies and a high surface area, as 
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observed from the SEM micrographs. The Fe content in the nanopowder samples was 

determined using two different techniques, the EDX and the ICP, as shown in Table 4. 

Similar results were obtained using these two techniques, indicating that the Fe/Al ratio is 

almost homogeneous (constant) throughout the nano sample prepared in the vapor phase. 

The atomic ratios were determined from the EDX spectra by integrating over the peak 

area, under the Al Kα and the Fe Kα lines. For example, the metal powder mixture 

containing 75.0, 50.0, and 25.0 atomic % Fe, have 65.79, 52.03, and 24.62 atomic % Fe, 

respectively, in the nanoparticles.  

The XRD pattern for the nanocrystalline sample prepared from (50:50 atomic %) 

of Fe and Al metallic powder mixture are shown in Figure 19, along with the diffraction 

patterns of pure Fe and Al nanoparticles. Neither Fe nor Al diffraction pattern matched 

the nanopowder sample patterns prepared from the Fe-Al (50:50) powder mixture. By 

comparing the XRD data to the database, good agreement was found between the XRD 

patterns of prepared nanopowder and bulk Fe0.5Al0.5 intermetallic alloy. The XRD 

patterns for different nanocrystalline samples prepared from powder mixtures with (75.0, 

50.0, 25.0 and 10.0 atomic % Fe) are shown in Figure 20.  
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Figure 12. Illustration of the preparation of mixed or alloy 
nanoparticles by laser vaporization of targets made from 
micron-sized powders. 
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Table 3. Atomic percentage of Ni in bulk powder and in 
nanoparticles using Inductive Coupled Plasma Spectroscopy 
(ICPS). 

 
Sample Ni atomic % Bulk. Ni atomic % nano. 
Ni3Al 75.00 40.84 
NiAl 50.00 31.25 
NiAl3 25.00 15.51 
NiAl9 10.00 6.69 
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Figure 13. SEM micrographs showing the web like structure 
for as-deposited nanoparticles prepared from Ni0.52Al0.48 powder 
mixture using the LVCC method under He atmosphere.  
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Figure 14. SEM micrographs showing the web like structure 
for the as-deposited Ni nanoparticles prepared by the LVCC 
method under He atmosphere.  
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Figure 15. SEM micrographs showing a web-like structure for 
the as-deposited Fe nanoparticles prepared by the LVCC 
method under He atmosphere.  
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Figure 16. XRD of a) NiAl, b) Ni and c) Al nanoparticles 
prepared by the LVCC method. 
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Figure 17. X ray diffraction patterns for Ni-Al 
nanoparticles prepared from bulk powders with the mixing 
atomic ratios of 75, 50, 25 and 10 % Ni are in a, b, c, d, e 
and f, respectively. 
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Figure 18. SEM micrographs (10 µm scale bar) and EDX spectra 
for nanoparticles prepared from a) Fe3Al, b) FeAl, and c) 
FeAl3 powder-mixed targets. The scale bar is 10 µm. 

a) FeAl3 b) FeAl c) Fe3Al 



www.manaraa.com

57 

 

Table 4. Atomic percentage of Fe in bulk powders and in 
nanoparticles using the Inductive Coupled Plasma 
Spectroscopy (ICPS). 

 
Fe-Atomic % nano Sample Fe-Atomic % bulk 
ICP EDX 

Fe3Al 75 70 65.79 
FeAl 50 54 52.03 
FeAl3 25 30 24.62 
FeAl9 10 16 -- 
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Figure 19. XRD of (a) Fe0.5Al0.5, (b) Fe, and (c) Al 
nanoparticles prepared by the LVCC method. 
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Figure 20. X ray diffraction patterns for Fe-Al 
nanoparticles prepared from bulk powders with the mixing 
atomic ratios of 75, 50, 33, 28, 25 and 10 % Fe are in a, b, 
c, d, e and f, respectively. 
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3-4 Filaments Formation in Electric Field 
 

3-4-1 Introduction 
 

The assembly of nanoparticles, under the influence of an electric field, offers 

many opportunities for the fabrication of microwires,14 nanostructured films,15 ordered 

arrays,16 and dendritic structures.17 These assemblies are usually established by the means 

of electrophoretic,15,16 dielectrophoretic,14,17 and electrochemical18,19 forces acting on the 

particles. An electric-field assisted assembly technique was used by Smith et al. to align 

gold nanowires in isopropyl alcohol.64 This electric field effect has been used to induce 

the growth of carbon nanowalls using the microwave-assisted chemical vapor deposition 

technique.65 For example, Nakato and coworkers66,67 studied the photo induced structure 

changes of silver nanoparticles under the influence of an electric field. 

Although considerable work has been recently reported on electric field effects on 

colloidal nanoparticles suspended in liquid phase, no work has been reported for the 

vapor phase. Interestingly, recent work indicated that the deposition efficiency of Si 

nanoparticles generated by laser ablation was improved by applying an electric field due 

to the generation of positively charged particles, which were efficiently transferred to the 

negatively biased electrode.68 However, no filament assembly was reported. Moreover, 

the application of a magnetic field has been reported to be effective for the fabrication of 

arrays of ferromagnetic iron and cobalt nanocluster wires by the thermal deposition of 

metal carbonyl.69 
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In this chapter a new method to assemble nanoparticles into filaments and tree-

like structures in the vapor phase under the influence of an electric field (dc) is 

described.70 
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3-4-2 Experimental 
 

The LVCC method has been used to prepare and study the influence of an electric 

field during the vaporization and condensation of several metallic (Ni, Fe), 

semiconductor (Si), mixed (Si/Pt), and intermetallic (FeAl, Ti3Al) nanoparticles. The 

LVCC method is described in section (3-2) with the top and bottom plates of the chamber 

used as electrodes, and applying an electric field (dc) between them. A bipolar Hewlett 

Packard 6516A power supply (0-3000 V dc) was used. The bottom plate was always kept 

grounded while the top plate carried the electrical charge and the two plates were isolated 

from one another by a quartz ring of 5 cm height.  
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3-4-3 Results and Discussion 
 

Typically, a 10 ns laser pulse with a power density of (106-107 W/cm2) produces 

about 1014 atoms and 106 ions from any metal or solid target.11 Therefore, during the 

LVCC processes, a significant fraction of charged nanoparticles is produced (by ions and 

free electrons). As a result, the growth pattern of nanoparticles (neutral and charged) in 

the vapor phase could be significantly influenced by applying an electric field across the 

chamber plates. It is known that in the presence of an electric field, the charged particles 

experience electrophoretic forces and, if this field is nonuniform, the neutral particles as 

well experience a translational motion known as dielectrophoresis.71 

Several experiments were conducted to investigate the factors controlling the 

filament-assemblies of nanoparticles. First, experiments were done that suggested the 

growth of filament was strongly dependent on the type of nanoparticles assembled. Ni 

and/or NiO nanoparticle mixtures were prepared (by adjusting the partial pressure of 

oxygen) in the chamber. These particles were prepared under a constant electric field of 

60 V/cm in the LVCC chamber. Over the studied oxygen range of (0.0-15.0 % in He), 

filament assemblies of nanoparticles were observed. At zero oxygen level, short, thin, and 

weak Ni filaments, with dendritic structures at the ends, were observed. By increasing the 

oxide level in the preparation of the nanoparticles, dense, long, and strong filaments (tree-

like structures) were obtained. The x-ray diffraction patterns for Ni/NiO filaments 

prepared with different oxygen percentages (0.0, 0.3, 0.8 and 15.0 % O2) are shown in 

Figure 21, along with the database diffraction patterns for bulk Ni and NiO materials 72. 
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The XRD of pure Ni nanoparticles exhibit diffraction peaks (2θ) of 44.47, 51.79, 76.35 

and 92.97 assigned to scattering from the 111, 200, 220 and 311 crystal planes, 

respectively. Based on the XRD data, the Ni nanoparticles were easily oxidized by 

reacting with oxygen to form NiO, 0.3% oxygen was sufficient to give a mixture of Ni 

and NiO nanoparticles. By increasing the oxygen percentage to 0.8 %, more Ni 

nanoparticles were converted to NiO, and at 15 % oxygen, all the Ni particles were 

oxidized to NiO; no diffraction peaks for pure Ni were observed. The XRD data 

confirmed the presence of only one phase (NiO), where its diffraction pattern exhibits 

peaks (2θ) of 37.29, 43.29, 62.91 and 75.55 assigned to scattering from 101, 012, 110 and 

113 crystal planes, respectively. The electric field-assisted Ni/NiO filaments had the 

same crystal structure as those prepared in the absence of an electric field; good 

agreement was observed between the database of the diffraction patterns and XRD data. 

The average particle size was estimated from the XRD data by using Scherrer’s 

equation:73 

θβ
λ

cos
CP =

  Eq. 3-1 

Where P is the particle diameter, C is a constant equal to (0.89), λ is the wavelength of 

the x-ray used (1.54184 Å), β is the full width at half maxima (FWHM) of the diffraction 

peak, and θ is the diffraction angle. The estimated average particle size for Ni and NiO 

nanoparticles using Scherrer’s equation are 22.6 and 24.2 nm, respectively. 

Under the electric field, nanoparticles were assembled as little chains and stacked 

end to end once the concentration of particles generated by laser vaporization was 
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sufficient. Generally, the chains grew perpendicular on top and bottom plates, and 

parallel to the electric field direction applied between them in the LVCC chamber. 

Eventually, the chains bridge the top and the bottom metal plates (electrodes), indicating 

that both negatively and positively charged particles were involved. The fiber and the 

tree-like morphologies of the filaments were different from the web-like morphology 

observed with no electric field. The scanning electron micrographs for pure Ni and NiO 

(Ni with 15.0 % O2) nanoparticles deposited on a glass substrate and prepared under 60 

V/cm are shown in Figure 22 (a-b), and (c-d), respectively. The morphology of the 

deposited Ni and NiO nanoparticles show the presence of fiber structures. Dendritic 

structures were observed at the ends of Ni filaments, whereas NiO shows a compact 

filament structure with fewer dendrites. 

Similar results have been observed for iron nanoparticles. Iron particles were 

prepared using the LVCC method, with and without applying an electric field. Again, 

only filament and tree-like structures were observed by applying an electric field. The 

optical photographs of iron tree-like structures prepared in 5.0 and 25.0 % oxygen under 

200 V/cm are shown in Figure 23 (a-b), and (c-d), respectively. Assemblies of filaments 

and tree like structures were observed hanging from the top plate of the chamber as 

shown with dendritic ends. These filaments (iron oxide) were grown up to 5 cm long 

(chamber height) by extending the laser vaporization time. 

The XRD data for iron nanoparticles prepared under 200 V/cm with different 

oxygen levels in helium gas (0.0, 0.2, 0.7, 5.0, 10.0, 25.0 and 50.0 % O2) are shown in 

Figure 24. It is clear from the XRD patterns that iron diffraction peaks decrease gradually 
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while iron oxide (Fe2O3) diffraction peaks gradually develop with increasing oxygen 

levels in the gas mixture. At 0.0 % oxygen, the XRD of pure Fe nanoparticles exhibit 

diffraction peaks (2θ) at 44.66, 65.03 and 82.38 assigned to scattering from 110, 200 and 

211 crystal planes, respectively. Some iron oxide peaks were also observed in the 

diffraction pattern of pure iron nanoparticles. This is due to the handling of the iron 

nanoparticles in air. These particles have a high surface to volume ratio and therefore, are 

readily oxidized. Between 0.2 and 0.7 % oxygen in the chamber, iron and iron oxide 

nanoparticle mixtures were formed. Since there was no significant change in the 

diffraction patterns between 5-50 % oxygen, all iron nanoparticles were oxidized to iron 

oxide (Fe2O3). The scattering angles at 30.11, 35.53, 43.19, 57.15, 62.77 and 89.85 were 

assigned to 220, 311, 400, 511, 440 and 731 planes of Fe2O3 crystal lattice.  

The morphology of the deposited iron particles, in the absence and the presence of 

an electric field (200V/cm), is shown in the SEM images in Figure 25. Web-like 

morphologies were observed in the absence of an electric field for iron nanoparticles 

prepared with 0.0, 5.0 and 25.0 % oxygen, as shown in Figure 25 a, c and e, respectively, 

while different morphology for the iron/iron oxide nanoparticles prepared under the same 

experimental conditions but with an electric field (200 V/cm) was observed; these are 

shown in Figure 25 b, d and f for 0.0, 5.0 and 25.0 % oxygen, respectively. Fiber-like 

structures with oriented filaments are observable in Figure 25-f, these filaments were 

connected together through necks as shown.  

The influence of an electric field during the preparation of intermetallic 

nanoparticles, such as FeAl (24% Al by wt.) and Ti3Al, was also studied.70 Displayed in 
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Figure 26 are some optical photographs of the LVCC chamber taken during the 

preparation of the FeAl nanoparticles under an electric field of 60 V/cm applied between 

the bottom and the top plate of the chamber. These optical photographs were taken after 

30, 60 and 120 min, respectively, irradiation time. After 30 min, the filaments were thin 

and long enough to join top and bottom plates of the chamber. After 60 min, branched 

filaments with tree-like structure were observed. Finally, after 120 min, long bundles of 

filaments were observed that were 5 cm long. It was also interesting to note that these 

chains stretched at higher field strengths and contracted when the field was turned off. In 

this experiment, the top plate was carrying a negative voltage of (-300 V). When the 

voltage was increased to (-400 V), the filaments inclined towards the top plate, while by 

incrementally decreasing to (-300 V), the filaments relaxed back to the original 

perpendicular orientation. This elastic behavior of nanoparticles chains was recently 

reported by Friedlander and coworkers 74,75 for TiO2, Al2O3 and Fe2O3 generated by laser 

ablation. 

The transmission electron microscope images for FeAl nanoparticles prepared 

under the effect of electric field (60 V/cm) are shown in Figure 27. A carbon-coated Cu 

grid was placed on the top plate of the LVCC chamber for 5 min during the experiment, 

and then examined under the microscope. The particles were relatively monodispersed, 

with an average particle size of about (15 ± 2) nm. Particles were assembled in chain-

aggregates made of spherical particles, as observed from the TEM results. The electron 

diffraction (ED) pattern showed a ringed structure pattern, indicating the crystalline 

nature of the nanoparticles prepared. 
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The SEM images of the FeAl nanoparticles assembled by the electric field 

(60V/cm) are shown in Figure 28 at four different magnifications and labeled as (I, II, III, 

and IV). These images have the following features; a fiber-like structure (I) constructed 

of chain filaments (II) that are joined together by small connections (III). At high 

magnification, the SEM image showed that the filaments were highly porous structures 

(IV). 

The XRD patterns for FeAl nanoparticles prepared by the LVCC method under an 

electric field of 60 V/cm with different oxygen percentages (0.0, 0.1, 0.3, 0.5 and 15.0 %) 

are shown in Figure 29. At 0.0 % oxygen, the scattering angles (2θ) at 30.81, 44.13, 

64.19 and 81.23 were assigned to 100, 110, 200 and 211 planes of FeAl crystal lattice. It 

is clear that as the oxygen was increased inside the chamber, more FeAl nanoparticles 

were oxidized. The XRD patterns of the oxide nanoparticles were consistent with the 

hercinite phase (FeAl2O4). The scattering angles (2θ) at 30.95, 36.19, 44.51, 58.43 and 

64.88 for (FeAl 15 % O2) were assigned to 220, 311, 400, 511 and 440 planes of FeAl2O4 

crystal lattice.  

Filament-like structures were observed for FeAl nanoparticles, prepared under 60 

V/cm, with no oxygen and with 0.1 % oxygen. Meanwhile, for the samples prepared in 

0.3 % oxygen, only aggregates and islands of particles were observed on the top plate of 

the chamber. However, when the oxygen percentage was increased to 0.5-15 %, no 

filaments were observed, only a smooth thin film of nanoparticles with web-like 

structures was obtained. Shown in Figure 30 are the deposited FeAl nanoparticles on the 
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top plate, under three different oxygen levels 0.0, 0.3 and 0.5 % oxygen, were filaments, 

aggregates, and thin film morphologies were obtained, respectively. 

Similar results have been observed for titanium aluminide (Ti3Al) nanoparticles, 

which were prepared under the same experimental conditions as the FeAl nanoparticles. 

The same electric field (60 V/cm) was applied during the preparation, with different 

oxygen levels of (0.0, 0.25, 0.50, 1.0 and 2.0 %). Ti3Al nanoparticles prepared in 1.0 and 

2.0 % oxygen, showed no filament formation, while those prepared in 0.0, 0.25 and 0.5 % 

oxygen formed filaments. TEM, ED, SEM, and optical photograph of Ti3Al nanoparticles 

prepared with 60 V/cm in helium atmosphere are shown in Figure 31. Based on the TEM, 

the average particle size is about 10 nm, while the SEM revealed that the filaments 

condensed like a bundle of wires or as in wool yarn. Tree-like structures of several 

centimeters long of Ti3Al, in the LVCC chamber, are shown in Figure 31c. 

It is not understood why the intermetallic nanoparticles of FeAl, and Ti3Al oxides 

show similar electric field effect behavior, since both intermetallic nanoparticles did not 

form filament-like structures at low oxygen percentages of 0.5 and 1.0 % for FeAl and 

Ti3Al, respectively. This may be due to aluminum-rich surfaces of the FeAl and Ti3Al 

nanoparticles, since pure Al nanoparticles did not form filament assemblies under 60 

V/cm electric field. Aluminum surface enrichment phenomenon have been reported by 

El-Shall and coworkers45,46, who prepared FeAl nanoparticles from a bulk FeAl target. 

The XPS for the FeAl nanoparticles revealed that the surface was enriched with Al, 

which has a lower surface tension than that of Fe. They have also found that the 
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crystalline structure of FeAl nanoparticles is (B2-CsCl type structure), same as the bulk 

structure. 

In addition to the effect of the oxide formation on the filament growth, an electric 

field threshold required for the filament formation was observed. This threshold was 

found to be material dependent. The values for the electric field required to induce 

filament assemblies for different materials are shown in Table 5. 

For example, when different fields (60, 100 and 200 V/cm), were applied to Si 

nanoparticles, only at 200 V/cm short Si fractals (~10-15 mm) were observed hanging 

from the top plate of the chamber, as shown in Figure 32a. When the electric field was 

reduced to 100 V/cm, isolated particle islands (aggregates) were observed on the top plate 

of the chamber. Finally, at 60 V/cm, a thin film of Si nanoparticles, deposited on top plate 

was observed, indicating that the electric field strength used in this experiment was not 

enough to induce the filament assemblies. Displayed in Figure 33 are the morphology of 

deposited Si nanoparticles, in the absence and the presence of an electric field (200 

V/cm). The SEM images were captured at two different magnifications. The images show 

a typical web-like morphology for Si deposited in the absence of an electric field. 

However, in the presence of field highly aligned bundles, consisting of parallel filaments 

connected together are shown in Figure 33d. These results led to the belief in the 

presence of an enormous electrostatic aggregation due to dipole forces between the 

nanoparticles to form chain filaments, and between the chain filaments to form fiber-like 

structures.  
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Interestingly, when Si and Pt targets were simultaneously vaporized by laser 

under the influence of 200 V/cm, unlike pure Si, long tree-like structures were formed 

inside the chamber, as shown in Figure 32b. The morphology of Si/Pt assemblies showed 

the formation of dendritic surface aggregates, as shown in Figure 34a. These aggregates 

were composed of nearly oriented bundles (Figure 34b) with highly porous structures 

(Figure 34c).  

In the above experiment, a mixture of Si and Pt nanoparticles were prepared, as 

illustrated from the x-ray diffraction data. In Figure 35 the XRD patterns for Si/Pt, Pt and 

Si nanoparticles are shown. It is obvious that both particles (Si, Pt) were present in the 

prepared assemblies. The TEM and the EDX results of these nanoparticles, indicated the 

formation of some core-shell structures, with a Pt core encapsulated in Si shell, as shown 

in Figure 36. The Pt content in Si/Pt nanoparticles was estimated from the EDX analysis, 

by integrating the area under Si-Kα and Pt-Lα, as shown in Figure 37 with average Pt 

content of 13.24 wt.%. 

In this experiment, the presence of Pt nanoparticles, in the mixture, is believed to 

enhance the formation of fiber-like assemblies of Si under the influence of an electric 

field. The Pt particles (atomic weight 195.078 amu) are more polarizable than the Si 

particles (atomic weight 28.0855 amu) under the same electric field. The addition of 

other interaction terms, such as polarizability, to the already existing particle-particle and 

particle-electric field (electrostatic) interactions, might be the reason for the Pt effect in 

enhancing the filament’s growth. 
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In conclusion, the effect of the electric field on the formation of the chain 

aggregates acts through the polarization of the charges on the nanoparticle surface. For 

larger particles, the effect of the electrostatic charge is overpowered by the effect of 

gravity, but for nanoparticles the electrostatic forces are predominant. It is believed that 

there is a mixture of positive and negative charges on the surfaces of the nanoparticles, 

and that some of the nanoparticles will have net charges. The nanoparticles with net 

charges will respond to the electric field with the electrophoretic force. However, the 

neutral particles will experience a dielectrophoretic force caused by polarization effects. 

The results can be explained within the framework of combined electrophoresis and 

dielectrophoresis effects. It appears that the initial nucleation and growth starts with the 

ions (electrophoretic effect) followed by accretion of neutral atoms and clusters 

(dielectrophoretic effect). Specifically, there are two effects that when combined may 

lead to the sticking of particles of the same net charge. The dipole force is very strong 

near the surface of the particle; further away from the surface, the net charge or monopole 

force becomes more effective. When two individual particles are separated by a certain 

distance, they will respond to the monopole charge between them, and if the monopoles 

are the same, the particles will repel. However, by orienting their dipoles so that they are 

attracting one another, because at this short distance the dipole dominates over the net 

charge, the two particles will stick together. The observations of enhanced assemblies of 

intermetallic and transition metal nanoparticles are consistent with the significant dipole 

forces and electronic polarizability, respectively, in these systems. 
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In addition, the convective currents in the LVCC method play an important role in 

nanoparticles assemblies. Convection current carries particles away from the nucleation 

zone before they grow further. Sites with nonuniform electric field (high energy), and 

high electric field density (filament terminals) would be favorable sites for newly 

prepared particles (carried by convection) to stick on and build up filament-like structure. 

It is also believed that the dendritic structures at the ends of nanoparticles filaments were 

due to dielectrophoretic forces, since the filaments were connected to the top plate that 

carry high voltage. The tip of the filament was carrying high electric field density that 

results in non-homogeneous electric field. The polarity of particles aligned parallel or 

perpendicular to the applied electric field plays a significant role in the formation of 

linear or dendritic chain structures. The dielectrophoretic force is given by:17 

2
om

3 EKaF ∇εεπ=   Eq. 3-2 

Where a is the particle radius, K is the complex Clausius-Mossotti factor, and εm and εo 

are the medium and vacuum permittivities, respectively. The dielectrophoretic force in 

Eq. 3-2 is not, in general, parallel to the electric field, if the electrode has a complex 

shape. The dielectrophoretic effects, such as F//E and F┴E in different electrode 

structures, are supposed to produce chaining structures, where different nanostructures 

are assembled due to relative alignment (parallel or perpendicular) of the particles with 

respect to the applied electric field. The energy of interaction between two closely 

situated polarizable particles can be approximated by:14 

3226
max / rEKRCW πε−=   Eq. 3-3 
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Where R is the particle radius, r the distance between the centers, E the intensity of the 

field, and ε the dielectric permittivity of the media. The Clausius-Mossotti function, K, 

for metallic particles ~ 1 and the factor C, range from 8 to more than hundreds, 

depending on the distance between the particles, the higher-order multipolar effects, and 

the number of particles in a chain. The most important component in the formation of 

filament assemblies is the attractive electrostatic interaction between the dipoles directed 

along the electric field. 

The tip of growing filaments creates local fields of high intensity and gradient, 

giving rise to a second component of the dielectrophoretic force, which arises from the 

interaction of the particle dipoles with the nonuniform electric field and is directed along 

the field gradient. In order to prove this electrostatic model, FeAl nanoparticles were 

prepared under the influence of 60 and 500 V/cm, respectively, in the chamber. Figure 38 

shows optical pictures, inside the chamber, for both experiments. In the first experiment, 

under 60 V/cm field, FeAl filaments grew and connected target with the top plate, as 

shown in Figure 38 a. On the other hand, using a high electric field (500 V/cm) resulted 

in discharging effect at the filaments’ tips growing on the target surface. These filament 

tips carry a highly-nonuniform electric field density, shown as purple coronas in Figure 

38 b. Therefore, these filament tips, which carry a high electric field density, will act as 

attractive sites for other particles generated by laser vaporization causing the particles to 

stick to them and form these filament-like assemblies. 
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Figure 21. X ray diffraction patterns of Ni nanoparticles 
prepared under different oxygen levels in the presence of an 
electric field (60 V/cm) using the LVCC method. 
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Figure 22. SEM micrographs of Ni (a,b) and NiO (c,d) 
filament nanoparticles prepared under the influence of an 
electric field (60 V/cm). 

a 
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Figure 23. Photographs for iron oxide nanoparticles prepared 
under high electric field 200 V/cm (a,b) and (c,d) are at 5% 
and 25% oxygen level, respectively, in the chamber. 
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Figure 24. X ray diffraction patterns of Fe nanoparticles 
prepared under the influence of constant electric field (200 
V/cm) and different oxygen levels. 
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Figure 25. SEM micrographs of Fe nanoparticles deposited in 
the absence (left images) and presence of electric field 
(200 V/cm) (right images) prepared under 3 different oxygen 
levels 0.0, 5.0 and 25.0 %, as displayed in (a-b), (c-d) and 
(e-f)), respectively. 
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Figure 26. Photographs of FeAl filaments in the chamber (E = 
60 V/cm) after 30, 60 and 120 min in a, b and c, 
respectively. 
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Figure 27. TEM micrographs and ED for FeAl nanoparticles 
prepared under an electric field (60 V/cm) by the LVCC 
method. 
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Figure 28. SEM micrographs of FeAl (24% Al) nanoparticles 
prepared under the influence of electric field (60 V/cm) 
using LVCC method with different magnifications (I, II, III 
and IV). 
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Figure 29. Oxygen addition effect on the fiber formation of 
FeAl nanoparticles in the presence of an electric field (60 
V/cm). 
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Figure 30. FeAl nanoparticles deposited on top plate under 
60 V/cm with three different O2 levels in the chamber 0.0% 
(a), 0.3% (b) and 0.5% (c) showing fibers, aggregates and 
thin film, respectively. 

a) b) c) 
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Figure 31. Ti3Al nanoparticles prepared under the influence 
of an electric field (60 V/cm), TEM, SEM and photograph of 
Ti3Al are shown in a,b and c, respectively. 
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Table 5. Electric field (dc) effects on the formation of 
nanoparticle filaments. 

 
Nanoparticles w fibers Electrical 

field (V/cm) 
Nanoparticles w/o fibers Electrical 

field (V/cm) 
In 200 Ga 200 

Si * 200 Al * 500 
Fe 60 B 200 
Cu 60 Ge * 200 
Zn 60 Sn 200 
Ti 60 Gd 60 
Ni 60 Er 60 
Mg 60   
C 60   

FeAl 6   
TiAl 60   
NiAl 60   

* FTIR shows some oxides. 
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(a) Si (b) Si / Pt(a) Si (b) Si / Pt

 

 
Figure 32. Photographs of (a) Si and (b) Si/Pt nanoparticles 
assemblied in filament and tree-like structures prepared in 
the presence of electric field (200 V/cm). 
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Figure 33 SEM micrographs of Si nanoparticles prepared 
without (a,b) and with (c,d) electric field (200 V/cm). 
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Figure 34. SEM micrographs of Si/Pt nanoparticles prepared 
in the presence of an electric field (200 V/cm). 



www.manaraa.com

90 

 

0.0

0.2

0.4

0.6

0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0 Si

51
142

2

33
1

40
0

31
1

22
011

1

a)

 

N
or

m
al

iz
ed

 in
te

ns
ity

2θ
22

2

31
1

22
020

0

11
1 P tb)

  

P
t 1

11

P
t 3

11

P
t 2

20

P
t 2

00

P t / Si

S
i 5

11

S
i 4

22

S
i 3

31

S
i 4

00S
i 3

11S
i 2

20

S
i 1

11

c)

 

 
 

 
Figure 35. X ray diffraction patterns of a) Pt/Si, b) Pt and 
c) Si nanoparticles. 
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Figure 36. TEM micrograph of Pt/Si nanoparticles prepared in 
presence of electric field (200 V/cm) with a core/ shell 
structure. 
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Figure 37. EDX spectra for Si/Pt nanoparticles prepared 
under 200 V/cm by simultaneous laser vaporization of Si and 
Pt targets in the LVCC chamber. 



www.manaraa.com

93 

 

 

 
 

Figure 38. Optical photographs of FeAl nanoparticles growing 
on target that is connected to the bottom plate of the 
chamber under (a) 60 and (b) 500 V/cm, respectively. 

(a) (b) 
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3-5 Size Selection 
 

3-5-1 Introduction 
 
 

It is well known that nano-scale materials exhibit 

unique properties that could be very different from those of 

bulk materials. Size-dependant properties are observed when 

nanoparticles are prepared with a narrow size-distribution. 

For example, size-selected silicon nanoparticles exhibit 

size-dependent photoluminescence due to quantum size 

effect,76-79 monodispersed FePt nanoparticles show high-

density magnetization reversal transitions80,81 and size-

controlled gold nanoparticles are used as catalysts of 

indium phosphide nanowires with tunable diameters.82 It is 

well known that such nano-scale properties are largely 

dependent on the size and the morphology of the 

nanoparticles. Nevertheless, the control of the size 

distribution, the crystallinity, and the agglomeration is 

the most important issue to fabricate the required property 

of nanoparticles. Monodispersed nanoparticles have been 

conventionally synthesized via a liquid phase process.83 

However, a significant amount of defects and impurities are 

associated with the nanoparticles made from solvents with 

surfactants in a liquid phase process. On the other hand, 

the gas phase process such as laser synthesis of 

nanoparticles is one of the processes that reduces 
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contamination since it can be operated under high purity gas 

atmospheres.84 However, it is difficult to control the size 

and distribution because the nucleation and growth are 

governed by the random collision of monomers and clusters by 

Brownian motion. Therefore, the controllability of the size 

distribution by the laser ablation is limited. 

The Laser vaporization and controlled condensation 

(LVCC) technique was developed to overcome these 

difficulties by controlling the nucleation, growth and 

transport of the laser vaporized material.85 In this 

technique, various kinds of nanoparticles were synthesized 

from supersaturated vapor, which was generated by laser 

vaporization of target materials under well-defined 

temperature, pressure, and electric field. The LVCC 

technique has been applied to the synthesis of nanoparticles 

of semiconductors, metal oxides,85 and intermetallic alloy.45 

The moderate temperature gradient and electric field 

suppress the turbulence in the chamber, so that the 

transport and the deposition of the generated particles can 

be controlled. Also, they are effective to reduce 

agglomeration of the primary particles. 

Differential mobility analyzers (DMA), which have been 

widely used in atmospheric aerosol measurement, have begun 

to be applied to the laser ablation synthesis of 

nanomaterials.86 The nanoparticles sorted by the DMA were 

characterized by an extremely narrow size bands.87-89 The 
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ability of the DMA to sort nanoparticles according to their 

sizes was also enhanced by operating it under reduced 

pressure conditions.20 In this work, DMA was basically used 

as a size classifier, which produces very narrow size ranges 

of the particles. Additionally, it can be used as a 

measurement instrument when it is coupled with a detector. 

However, as it is well known, it is difficult to apply to 

the industrial scale of the production since the production 

rate is comparatively low (less than µg<hr). 

In this work, the performance of the DMA to obtain the 

monodispersed nanoparticles is demonstrated. Also, DMA is 

used as an in-situ monitor of the size distribution of the 

nanoparticles generated by LVCC operated under various 

conditions. The parameter of the LVCC was such that the 

temperature gradient, ∆T and the electric field, E were 

optimized to obtain specific size range of nanoparticles 

based on the measurement of size distribution using a DMA. 

 

Generation and Transport of Nanoparticles in the LVCC Process 

The schematic illustration of particle formation and 

transport in the LVCC chamber is shown in Figure 39. The 

nanoparticles were produced by the rapid cooling of 

supersaturated vapor, which was evaporated from a solid 

target with pulsed laser irradiation in inert gas. Part of 

the particles were originally carrying the electrical charge 
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(most likely in the equilibrium charge state) by the thermal 

electrons, photoelectrons, and ions generated in the laser-

induced plasma plume. The generated particles were then 

transported by the gas flow, from the bottom to the top of 

the chamber. By applying an electric field between the two 

plates, the particles were attracted to one side of the 

plate by electrostatic force, and they were deposited on the 

specific side of the plates when the particle electrical 

velocity was large enough with respect to the gas velocity. 

Here, the electrostatic velocity of the particles is 

represented as: 

vE=ZpE  Eq. 3-4 
The electrical mobility, Zp, of particles is expressed as: 

Zp = qeCc/3πµdp Eq. 3-5 
Where q is the number of charge, e is the elementally 

electrical charge, µ is the viscosity of gas, and dp is the 

particle diameter. CC, the Cunninghum’s correction factor, 

is expressed as:  

CC = 1 + Kn {1.257 + 0.40 exp (-1.10/Kn) Eq. 3-6 

Where Kn is Knudsen number (= 2λ/dp; λ is mean free path of gas 

molecules). The dependence of the mean free path on the pressure of a gas is given 

by: 

p
kT

22πσ
λ =

  Eq. 3-7 
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Where k, T and σ are the Boltzmann constant, temperature, and collision diameter of a 

gas molecule, respectively. In the free molecular regime (Kn>>1), the electrical mobility 

is inversely proportional to the gas pressure, while the relationship between the particle 

diameter and applied voltage does not change with pressure. 

However, when the thermal gradient was applied between 

two plates of LVCC chamber, the particles were moved by the 

thermophoretic force. The thermophoretic diffusivity DT at 

the temperature T and temperature gradient ∆T was obtained 

by the following equation: 

DT = αTν (∆T/T) Eq. 3-8 

Where ν is the kinetic viscosity and αT is the thermophoretic 

constant which is almost constant at 0.54 with particle 

diameter in the nanometer-size range (Knudsen number; Kn >> 

1). The DT, is almost constant with respect to the particle 

size, while Zp has strong dependence on particle size. 

Therefore, thermophoretic force is available for collecting 

all sizes of particles on the cold plate, while the 

electrostatic force is suitable for collecting specific size 

of nanoparticles. 

In order to balance these external forces and to 

control the transport more effectively, a He gas flow was 

used as the carrier gas, as shown in Figure 39. Two mesh 

plates were located at top and bottom of the chamber and a 

vertical uniform flow in the chamber was produced. The 
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average gas velocity is simply calculated by (vg = Q/A), 

where Q is the volumetric flow rate of gas and A is the 

cross sectional area of the chamber. It should be noted that 

the negatively charged particles were moving against the gas 

flow when the positive voltage was applied to the bottom 

plate. As a result, positively charged particles accelerated 

toward the outlet (top plate), but negatively charged 

particles may have balanced with the electrostatic field. By 

setting specific values for voltage, temperature, and gas 

flow rate; sizing of the generated particles can be 

achieved. 
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3-5-2 Experimental 
 

The synthesis of nanoparticles by LVCC technique was 

mentioned in section 3-27. In this work, the LVCC was 

modified to operate in a flow mode rather than in a static 

mode by using two mesh plates at the top and bottom of the 

chamber to produce a continuous carrier gas (He) flow in the 

chamber, as mentioned in the last section. The whole 

experimental setup is illustrated in Figure 40. The particles 

were synthesized by a nano-second pulsed Nd:YAG laser 

vaporization (wavelength, 532nm; power, 70 mJ/pulse) from a 

bulk target (Si or FeAl). The electric field was generated 

by applying a positive dc voltage to the bottom plate and by 

grounding the top plate. Similarly, temperature gradient was 

produced by feeding hot water (up to 90 oC) to the bottom 

and by cooling the top plate by liquid nitrogen. The charged 

particles, generated by laser vaporization, were condensed 

and transported by electrostatic force, the thermophoretic 

force, and the gas stream. The nanoparticles that had a 

larger velocity than the particle inertia were deposited on 

the top plate. The size of the deposited nanoparticles was 

controlled by tuning the strength of the applied field. The 

morphology and the size of the deposited particles were 

observed by a scanning and a transmission electron 

microscope. The crystallinity of the collected particles was 

also analyzed by x-ray diffraction (XRD). The rest of the 
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particles, which did not deposit on the plates were 

transported out of the LVCC chamber with a carrier gas and 

then introduced into a differential mobility analyzer (DMA). 

An illustration of DMA principle is shown in Figure 41. In the DMA, the 

particles were differentially classified utilizing the 

balance of electrical mobility and gas flow. The mobility of 

the classified particles was related to the applied voltage 

to the DMA, V, as:  

LV
R

RQ
Z

s

p π2

)ln(
1

2

=
 Eq. 3-9 

Where Qs is sheath gas flow rate, R1, R2, and L are radii of 

DMA inner rod and outer column, and the length of 

classification zone, respectively. By combining Eq. (3-5) 

with Eq. (3-9), the mobility equivalent diameter of the 

nanoparticles can be controlled by the DMA applied voltage. 

After the classification by the DMA, the particles were 

collected by impaction onto the solid substrate. By 

measuring the electric current, I, from the singly charged 

particles, the number density of the particles, N, can be 

obtained as: 

aeQ
IN =  Eq. 3-10 

Where Qa is aerosol flow rate. The mobility size 

distribution of the gas phase particles can be observed in-
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situ by scanning the DMA applied voltage and measuring 

electric current. 
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3-5-2. Results and Discussion 
 

Size classification by DMA 

The performance of the classification process of the 

newly designed LP-DMA was calibrated by the comparison 

between the electron micrographs. The calibrations for the 

DMA were demonstrated at Tsukuba, Japan (National Institute 

of Advanced Industrial Science and Technology (AIST)) and 

the measurements of nanoparticles generated by LVCC were 

done at Virginia (Virginia Commonwealth University (VCU)) 

using the same dimension of the DMA. Size-selected FeAl 

particles of 30, 14 and 7 nm are shown in Figure 42. The 

classified particles were directly deposited on TEM 

microgrids. The size-selected FeAl particles were prepared 

by varying DMA applied voltage. 

 

Size-Controlled deposition by utilizing the electrostatic force 

Shown in Figure 43 are the size distributions of 

positively charged FeAl nanoparticles with varying electric 

fields applied between the chamber plates. The peak size is 

around 12 nm and is slightly larger than Si nanoparticles 

due to the lower vapor pressure of FeAl. Also, the 

distribution seems to be composed of two modes of particle 

peaks at about 12 nm and peak at about 30 nm. The first peak 

corresponds to small particles generated by the nucleation 
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of vaporized material, and the second peak might be produced 

by the field-induced aggregations as discussed in the last 

section 3-4. It could also be due to droplet-like particles 

generated by the liquid phase splash induced by ns-laser 

pulse. When the positive voltage was applied to the bottom 

of chamber, a significant decrease in the first peak was 

observed as shown in Figure 43. Since the electric mobility is 

a function of particle size, then the smaller positive 

particles, which had a larger velocity would deposit on the 

top of the chamber. On the other hand, the larger particles, 

which remained in the gas stream, were slightly accelerated 

and therefore exited from the chamber and were measured by 

the DMA. The non-dimensional form of Eq. (3-4) for the 

electrical velocity, vE* is given as:  

vE* = ZpV/ L vav, Eq. 3-11 
Where V is the voltage applied to the bottom plate. The 

value of vE* is 2.5 for dp = 5 nm, 0.43 for 12 nm and 0.04 

for 40 nm at E = 1470 V/m. The smaller particles had enough 

velocity to be deposited by the electric field, but most of 

the larger particles (> 10nm) accelerated and passed through 

the mesh at the top plate of chamber. Therefore, the 

concentration of the first peak decreased, and the secondary 

mode of the particles (> 20nm) in the outlet of the chamber 

increased with the electric field.  
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Similarly, the size distribution of the negative FeAl 

particles changed drastically with electric field as shown 

in Figure 44 however, the smaller field (147 V/m) is enough to 

decrease the number concentration of the particles in the 

outlet since the direction of the field is opposite to the 

gas. The generated negative particles were decelerated due 

to the electric force against the gas flow. Also, there was 

no increase in the observed number concentration as in the 

case of the positive particles because most of the particles 

were trapped in the chamber. 

The scanning electron micrographs of the deposited 

particles with (a) small electric fields (E = 147 V/m) and 

(b) large electric fields (E = 2940 V/m) were shown in Figure 

45. As predicted by the results of the DMA, the particles 

collected with a weak field showed the fine chain-like 

structures composed of nanoparticles less than 10nm. On the 

other hand, the SEM image for the strong fields (Figure 45(b)) 

shows a more aggregations and rough surface structures. 

These results were confirmed by transmission electron 

microscope images of the particles deposited on carbon-

coated Cu grid placed on the top plate of the chamber for 60 

min at 147 and 2940 V/m, respectively, as shown in Figure 46. 

The increase in number density of particles at (2940 V/m) 

compared to at (147 V/cm), is explained by the electrical 

velocity of small particles, which increased drastically by 
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increasing the electric field. This results in depositing 

most of the small particles more efficiently on the top 

plate. Another TEM images are shown in Figure 47 with more 

magnification of FeAl nanoparticles depositing for 60 min 

under 147 and 2940 V/m, respectively. 

Shown in Figure 48 are the XRD patterns of generated 

particles. Obviously, the diffraction patterns show similar 

peaks with the reference data 68 of one to one alloy of iron 

and aluminum (FeAl) for both strengths of the electric 

field. The sample prepared in the weak electric field 

indicated relatively large and broad peaks of oxides around 

2θ = 33 degree and also it showed relatively a strong peak 

for [110] direction, probably caused by the decrease in the 

particle size.  

 

The effect of temperature gradient on the size distribution 

Shown in Figure 49 are the changes in the size 

distribution of silicon nanoparticles measured by the DMA at 

the outlet of the LVCC chamber at a constant pressure of 20 

Torr, at different temperature gradients, applied to the 

chamber. In the case where the temperature gradient was 

zero, the distribution with the peak size of about 10 nm was 

measured. No significant change in the size distribution was 

observed up to a temperature gradient of ∆T = 50 °C. By 
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setting the temperature difference between the two plates to 

90 °C, number concentrations of the particles that were 

exited from the chamber approximately doubled. Increase in 

the number concentration was observed for all sizes of 

particles since the thermophoretic velocity is independent 

of particle size, as mentioned before. The non-dimensional 

form of Eq. (3-8) is given as: 

vT* = DT / L vav, Eq. 3-12 
Where L (=65 mm) is the distance between two plates. The 

value of vT* is 2.59 at ∆T = 90 °C. The increase in the 

number concentration occurred because thermophoretic 

velocity is considered to be in the same order with carrier 

gas velocity at ∆T = 90 °C. When the top plate was cooled 

by feeding-in liquid nitrogen, a sudden decrease in number 

concentration was observed at ∆T = 150 °C, because most of 

the generated particles were deposited on the cold plate. 

The value of vT* is 4.67 at ∆T = 150 °C, which indicates 

that the thermophoretic velocity is about 4.7 times larger 

than the average gas flow velocity. It is clear that ∆T = 

90 °C is suitable for obtaining aerosol particles out of the 

LVCC chamber, and ∆T > 90 °C is required for particle 

collection in the LVCC chamber. The cut-off normalized 

velocity, vT* for the deposition is considered to be about 3 

to 4.  
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The effect of laser power and pressure on the size distribution 

Typical size distributions of positively charged Si 

nanoparticles prepared under a pressure of 20 Torr He gas 

inside a newly designed flow-LVCC chamber are shown in Figure 

50. The Si nanoparticles were prepared under identical 

condition, but different laser vaporization powers of 40, 

50, 66 and 140 mJ/pulse, respectively. The four size-

distribution data show maxima at 9 nm, indicating that most 

of the Si nanoparticles prepared have a particle diameter of 

9 nm regardless of the laser power used. As the laser power 

increases, the number-concentration of particles increases, 

including charged particles (detected by DMA). This result 

can be explained by the fact that when a high-energy laser 

pulse (high photon density) hits the Si surface, a large amount 

of energy is dumped into the target surface in a very short period of time, causing its 

surface temperature elevate very quickly and vaporize from the surface.90 An estimated 

of 106 ions and 1014 atoms within a 10 ns laser pulse have been reported 11.  

The pressure effect on the size-distribution of Si 

nanoparticles is displayed in Figure 51. The size-distribution 

data were collected at four different pressures (21.4, 26.2, 

32.5 and 62.8 Torr). The size-distribution shifts to bigger 

particle sizes as the pressure increases inside the chamber; 

at chamber pressure of 21.4, 26.2 and 32.5 Torr, the maxima 
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of the size-distribution shifts to 6, 7 and 13 nm, 

respectively. At higher pressure (62.8 Torr), hardly any 

charged nanoparticles exit from the chamber to the DMA. It 

was also observed that the number density of particles 

detected by the DMA decreased with increasing pressure 

inside the chamber. These results can be explained by the 

following; when the pressure increases, residence time of 

particles increases inside the chamber. As a result, the 

particles will have more of a chance to agglomerate, 

shifting the size distribution to a larger size regime as 

well as decreasing the number density since the number of 

particles generated from laser vaporization is almost 

constant at the same power. A similar behavior has been 

reported by Seto and Camata.20,91 

 

Summary 

The formation and the transport of the nanoparticles 

were investigated and controlled by coupling a modified LVCC 

technique with a real-time measurement of particle size 

distribution by DMA. By analyzing the transport of 

nanoparticles in the generation chamber, specific size 

ranges of the particles could be selectively collected. This 

method was considered to be applicable to the synthesis of 

nano-materials, which gave novel optical, mechanical, and 

magnetic properties. 
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Size distribution of the silicon and iron aluminide 

(FeAl) nanoparticles generated by the laser vaporization 

controlled condensation (LVCC) method was analyzed in-situ 

using a low-pressure differential mobility analyzer (LP-

DMA). The particles were generated and deposited by the 

laser ablation of solid targets in the presence of a well-

defined thermal and electrical field in a newly designed 

flow-type LVCC chamber. The deposition rate of nanoparticles 

was controlled by the balance of the external forces, such 

as thermophoretic and electrostatic forces, under different 

synthesis conditions including the pressure of the carrier 

gas (20 - 200 Torr), the temperature gradient in the LVCC 

chamber (T = 0 - 190 °C), and the electric field applied 

between the LVCC chamber plates (E = 0 – 3000 V/m). The 

results indicated that an electrostatic field of about 147 

V/m was effective to selectively deposit small size 

nanoparticles-films while expelling large droplet-like 

particles. The performance of the LP-DMA as the size-

classifier to fabricate nanoparticles with very narrow band 

distribution was also demonstrated. 
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Figure 39. Schematic illustration of particle formation and 
transportation in the LVCC chamber. 
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Figure 40. Schematic of the LVCC flow system coupled with 
DMA for the preparation of size-selected nanoparticles. 
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Figure 41. Illustration of the principles of operation of 
the DMA. 
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Figure 42. TEM of selected FeAl nanoparticles 30, 14 and 7 
nm shown as (a,b), (c,d) and (e,f), respectively. 
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Figure 43. Size distribution of positively charged FeAl 
nanoparticles with varying electric field. 
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Figure 44. Size distribution of negatively charged FeAl 
nanoparticles with varying electric field. 
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Figure 45. SEM micrographs of FeAl nanoparticles deposited 
on the top plate of the chamber under electric field of a) 
147 V/m and b) 2940 V/m. 

a) b) 
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Figure 46. TEM micrograph of as-deposited FeAl nanoparticle 
for 60 min in the chamber under electric fields of a) 147 
and b) 2970 V/m, respectively. 

b) E = 2940 V/m 

50 nm 

a) E = 147 V/m 
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Figure 47. TEM micrograph of as-deposited FeAl nanoparticle 
for 60 min in the chamber under electric fields of a) 147 
and b) 2970 V/m, respectively. 

b) E = 2940 V/m a) E = 147 V/m 

20 nm 20 nm 
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Figure 48. X-ray diffraction patterns of FeAl nanoparticles 
collected from the chamber with applying two different 
electric fields a) 147 and b) 2940 V/m, respectively. 
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Figure 49. Size distribution of Si (+) nanoparticles at the 
outlet of LVCC chamber measured by DMA with varying 
temperature gradient. 
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Figure 50. Size distribution of Si (+) nanoparticles at the 
outlet of LVCC chamber measured by DMA with varying laser 
power.  
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Figure 51. Size distribution of Si (+) nanoparticles at the 
outlet of LVCC chamber measured by DMA with varying the 
pressure inside LVCC chamber. 
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3-6 Optical Properties of Au-Ag Alloy Nanoparticles 
 

3-6-1 Introduction 
 

It is now well established that nano materials (1-100 nm) exhibit unique chemical 

and physical properties that differ from those of the bulk materials. The applications of 

these nanomaterials are thus expected to be very important in many fields of advanced 

technology and science including catalysis, chemical and biological sensors, 

optoelectronics, drug delivery, media storage, and the photographic industry. For 

instance, nanoparticles of silver and gold exhibit yellow and red-wine color, respectively, 

which is different from their bulk color. These nanoparticle colors are attributed to the 

surface plasmon absorption in the UV-visible region. This phenomenon was first 

explained by Mie in 1908, who applied a classical electrodynamic model to spherical 

particles and solved Maxwell’s equations with the right boundary conditions. It is known 

that Ag and Au nanoparticles have plasmon peaks at approximately 400 and 520 nm, 

respectively. The origin of this surface plasmon band is the collective oscillations of free 

conduction electrons in metal excited by light at a particular wavelength.  The oscillation 

frequency is determined by four factors;92 the metal electron density, the effective 

electron mass, and the shape and size of the charge distribution.  As the particle size gets 

smaller than the mean free path of the free electrons, the plasmon band broadens until it 

disappears. For example, gold particles less than 1 nm had no plasmon absorption band. 

To control the surface plasmon band, one needs to control particle size and composition. 

In recent years, a large number of preparation methods have been proposed for the design 
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of bimetallic nanocomposites (i.e., alloy and/or core-shell structure) of gold-silver owing 

to their different catalytic properties, surface plasma band energy and surface-enhanced 

Raman activity compared to that of monometallic silver or gold nanoparticles.  

Gold-silver alloy nanoparticles had been prepared chemically by co-reduction of 

silver and gold salts via a one-phase method. For example, El-Sayed and co-workers have 

prepared Ag-Au nanoparticles in water by using sodium citrate as a reducing agent.93 Lee 

and co-workers prepared it in chloroform by sodium borohydride (NaBH4).94 Mono 

dispersed alloy nanoparticles have been also prepared by a two-phase method. For 

example, He and co-workers95 prepared alloy nanoparticles passivated with octanthiol in 

chloroform/water biphasic solution with particle size of 5nm. Similar work by Kim and 

co-workers96 has been reported. They were able to prepare Ag-Au alloy clusters (4nm) in 

a water/toluene two-phase system by NaBH4, using dodecanethiol as a stabilizer. Water-

in-oil microemulsion method had been reported by Chen et al., where hydrazine was used 

to co-reduce Au and Ag salts.97 Aside from chemical reduction methods, Papavassliou98 

prepared colloidal Au-Ag alloy nanoparticles. He applied a high ac voltage between bulk 

Ag-Au alloy and Pt electrodes immersed in 2-butanol. Evaporation and condensation of 

alloy nanoparticles happened when an electric discharge between the two electrodes took 

place. More recently, laser ablation methods have been developed to prepare bimetallic 

and monometallic nanoparticles in solution. In the case of pure gold, Kimura et al. had 

prepared Au colloid in 2-propanol by the gas-flow solution-trap method.99 He studied the 

coagulation of Au nanoparticles induced by applying a continuous (CW) Ar ion laser 

irradiation. Kondow et al. prepared Au nanoparticles by using the pulsed laser ablation 
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(λ = 1064 nm) of a gold plate in aqueous solution of surfactant sodium dodecylsulfate 

(SDS).100 He studied the laser-induced melting of Au colloidal solution of surfactant by 

532 nm, where they were able to reduce the particle size to ~2nm. Others, like Koda and 

co-workers, prepared Au nanoparticles by chemical reduction in water and then 

irradiating the solution by the second harmonic of a pulsed Nd:YAG laser (532 nm).101 

They studied the shape changes followed by the size reduction for Au nanoparticles, 

which depended on the laser power used. They explained these conformational changes 

to the laser induced melting process by adopting the fact that, gold has a plasmon 

absorption band around (520 nm) in vicinity to the wavelength of the irradiating light 

(532 nm).  

For Ag nanoparticles, Kondow et al. prepared Ag nanoparticles by laser ablation 

(λ = 532 nm) of a silver plate in aqueous solution of sodium dodecylsulfate (SDS).102 

They found that by increasing the concentration of SDS in water, under constant laser 

power, they were able to reduce the particle size. They attributed this to the fact that, at a 

sufficiently high concentration of SDS molecules, small Ag fragments are stabilized, and 

hence, coagulation is decelerated. Koda et al. have investigated the effect of the third 

harmonic light of a pulsed Nd:YAG laser (355 nm) on the irradiation of chemically-

reduced Ag nanoparticles in aqueous solution.103 The reduction of Ag particle size, after 

laser irradiation, was explained by desorption of Ag atoms from the surface due to light 

absorption followed by plasmon excitation of Ag particles.  

In the case of alloy nanoparticles prepared using light, Hartland and co-workers104 

studied the laser-induced interdiffusion of core-shell structure to alloy nanoparticles in 
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aqueous solution. Simard et al.105 prepared Ag-Au alloy nanoparticles by irradiating a 

metal powder mixture in an aqueous medium with the second harmonic of a pulsed 

Nd:YAG laser (532 nm). Yeh et al.106 have also prepared alloy nanoparticles by 

irradiating a colloidal mixture of pure Au and Ag by laser irradiation (λ = 532 nm). 

Most of the previous methods used to prepare bimetallic alloy between gold and 

silver were carried out in a liquid media. In this work, gold-silver alloy nanoparticles, for 

the first time, in the vapor phase under Ar atmosphere using Laser-Vaporization 

Controlled-Condensation method (LVCC) were prepared. One of the advantages in 

vapor-phase preparation is the contamination-free product compared to chemical 

reduction in a solution. The interaction between as-prepared alloy nanoparticles with a 

coherent laser beam of different wavelengths, namely, the fundamental (λ = 1064 nm) 

and the second harmonic (λ = 532 nm) of a pulsed nanosecond laser will be addressed 

here. 
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3-6-2 Experimental 
 

Gold-silver alloy nanoparticles were produced from micron-size powder mixtures 

of gold and silver by laser vaporization in the vapor phase. Three different compositions, 

made of gold powder (Aldrich, 99.99+%, < 841 µm) mixed with silver powder (Aldrich, 

99.999%, < 590 µm) then pressed (hydraulic IR Die at 500 MPa) into a pellet to form a 

bimetal target. The first target is 2:1 by wt% silver (Ag 0.79 Au 0.21), the second target is 

1:1 by wt% silver (Ag 0.64Au 0.36), and the third target is 1:2 by wt% silver (Ag 0.48Au 0.52). 

The stoichiometric coefficients shown for each composition represent the atomic ratio 

between gold and silver in the target. The Laser Vaporization Controlled Condensation 

(LVCC) method was used to prepare gold-silver alloy nanoparticles in the gas phase 

using Ar as a carrier gas (99.99% pure). In this method laser vaporization of metals was 

coupled with controlled condensation from the vapor phase. The target was placed in a 

modified diffusion cloud chamber (DCC). The chamber was made from two circular 

stainless steel plates separated by a glass ring. The setup of LVCC method is shown in 

Figure 11. The pressure in the chamber was adjusted to 1000 Torr of Ar gas. The 

temperature difference between the chamber plates (60-70 °C), along with the high 

pressure inside the chamber, creates a steady state convection inside the chamber. The 

target of a certain composition, which was placed on the bottom plate, is vaporized by a 

second harmonic beam (532 nm, 250 mJ/pulse) of a pulsed Nd:YAG laser (Quanta-Ray, 

Spectra-Physics) operated at 30 Hz and 2 ns pulse width. The laser beam was focused on 

the target by a lens of focal length 50 cm. The beam cross-section area was measured on 

the target to be (0.031 cm2), with a power density of 8.5 x 109 W/cm2. When the laser 
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pulse vaporized the target, a shock wave was initiated due to the collisions between the 

gas and the target atoms and a plume was emitted.48 Evaporated atoms colloid with the 

gas atoms at the front of the expanding plume. As a result, the plume atoms were rapidly 

thermalized within 10-100 microseconds after the laser pulse.49 The speed of 

thermalization is related to the efficiency of the energy transferred during gas-target atom 

collision, which depends on their atomic masses. The cooling plume, confined behind the 

shock wave, became supersaturated, leading to nanoparticle formation via homogeneous 

nucleation. The degree of thermalization required for condensation is also related to the 

vapor pressure of the target material. The temperature of the top plate was maintained at 

room temperature (25 oC) while the bottom plate was maintained at (90 oC). The steady 

state convection inside the chamber carried the particles from the plume (highly 

supersaturated with target vapor) before they grow more. The particles were deposited on 

the top plate of the chamber. After every run the chamber was brought to room 

temperature and the sample was collected from the top plate. 

Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy 

(EDX) and Scanning transmission electron microscopy (STEM) was done on a Quantum 

DS-130S Dual Stage Electron Microscope. A carbon substrate was placed inside the 

chamber (on the top plate) to observe the morphology and size of as-deposited 

nanoparticles under SEM. Electron diffraction (ED) and Transmission electron 

microscope (TEM) images were obtained using the JOEL JEM-FXII TEM operated at 

200kV. High-resolution TEM (HRTEM) images were obtained using JOEL 4000EX 

operated at 400 kV. Namely, a drop of aqueous dispersed nanoparticles was placed on a 
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copper grid, which is coated by a carbon film, and then dried in a desiccator.  The 

chemical composition and the phase measurements of the nanoparticles prepared was 

analyzed using X-ray powder diffraction (XRD) on an X’Pert Philips Materials Research 

Diffractometer, which uses Cu Kα radiation. The elemental analyses were done on 

Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) to measure the 

amount of gold in the nanoparticles. The ICP measurements were done on Varian 

VISTA-MPX instruments. The UV-Vis absorption was done on a Hewlett-Packard HP 

8453 diode array spectrometer with a quartz cell of 1 x 1 x 4 cm3. The laser power was 

measured using (OPHIR optronics LTD., NOVA laser power monitor). 

To measure the optical properties of the prepared nanoparticles as well as to 

reirradiate them, colloidal solutions were prepared by dispersing the Ag-Au nanoparticles 

in a triply deionized water (18 MΩ) using air ultra sound waves. Typically, 3-6 hours 

were needed to disperse 5 mg in 20 ml deionized water in a sonicator. Three different 

concentrations were prepared 26, 52 and 133 mg/L. In a typical laser-irradiation 

experiment, a 10 ml colloidal solution was held in a 20 ml Pyrex beaker and irradiated 

under agitation using a magnetic stirrer. The particles were irradiated by either the 

fundamental of a Nd:YAG pulsed laser (1064 nm, (6.0-7.56) x 107 W/cm2, 10Hz) or the 

second harmonic of a Nd:YAG pulsed laser (532 nm, (4.25-5.36) x 107 W/cm2, 10Hz). 

For TEM and STEM, one drop of the colloidal solution was placed on a 200 mesh Cu 

grid coated with carbon. The grid was left in a desiccator until it dried out.  

In order to determine how the composition of the prepared nanoparticles varies 

compared to the starting composition of the target, the ICP was used to measure the 
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content of gold in the nanoparticles. Shown in Figure 52 is the relationship between the 

composition of the Ag-Au nanoparticles prepared by LVCC method and that of the bulk 

target. It is clear that the molar ratio of gold in the nanoparticle compositions is different 

from those in the metal powder mixtures. For the metal powder mixtures containing 51.8, 

35.6 and 21.2 mol % Au, there are 47.3, 28.7 and 16.6 mol % Au, respectively, in the 

nanoparticles as shown in Table 6. This can be explained by considering that the 

generation speed for pure Ag is higher than that of pure Au since the boiling temperature 

of Au is higher than that of Ag. In fact, the Ag content in Ag-Au nanoparticles is about 

1.06-1.20 times those in bulk metal powder mixtures. These results are similar to what 

Liu and co-workers57,62 have observed while preparing Fe-Al nanoparticles by hydrogen 

plasma-metal reaction from a bulk alloy. They found that the content of Al in 

nanoparticles is higher than that in the bulk alloy. They explained this result in terms of a 

difference in evaporation speeds of pure metals. For convenience, here after the alloy 

nanoparticles are referred as Ag0.83Au0.17, Au0.71Ag0.29 and Au0.53Ag0.47 and for pure metal 

nanoparticles as Ag and Au. The stoichiometric coefficient represents here the actual 

content of Ag and Au in the nanoparticles as determined from the ICP technique. 
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3-6-3 Results and Discussion 
 

Alloying in the gas phase. 

Pure gold and silver nanoparticles were prepared, under Ar gas, using the 

LVCC method. Typical SEM micrographs of the as-deposited gold and silver 

nanoparticles are shown in Figure 53-a and Figure 54-a, respectively. The particles in 

both cases are aggregated, with more aggregation in the case of gold particles, where the 

average particle size is smaller compared to the silver particles. The optical properties of 

pure gold and silver nanoparticles were measured after they were dispersed in 10 ml of 

ultra pure water (18 MΩ). Shown in Figure 55 are the typical STEM micrographs for 

gold and silver nanoparticles after they were dispersed in water. The STEM shows that 

even after particles were dispersed in water, a broad particle size distribution and 

aggregation were observed for both metal nanoparticles, which is similar to as-deposited 

particles from the gas phase. The UV-visible absorption spectra of dispersed gold and 

silver particles in water are shown in Figure 53-b and Figure 54-b, respectively. A single 

plasmon absorption band at 540 and 406 nm was observed for gold and silver 

nanoparticles, respectively. As discussed earlier, the position and the shape of the 

plasmon peaks are strongly dependent on particle size and aggregation, dielectric 

medium, surface adsorbed species, and chemical composition. The positions of these 

plasmon peaks are in relatively good agreement with what Kondow et al. had 

observed.100,102,107-110 The plasmon band of silver lied on a tail of a broad band extending 

to the UV region, which originated from the interband transition in the silver particles 

(250 nm). The broadening in the absorption plasmon bands originated mainly from two 
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factors. The broad particle size distribution in all the nanoparticles prepared by the LVCC 

method, in addition to the aggregation effects. Since small particles have a high tendency 

to aggregate faster than big particles due to their high surface energy. As seen from the 

SEM and the STEM micrographs, the average particle sizes for gold is smaller than that 

of silver particles. These results can be attributed to the wavelength used (532 nm) in the 

vaporization of the metal targets. At this wavelength the absorpitivity of gold is much 

higher than that of silver owing to its plasmon absorption at (520 nm). When the surface 

plasmon band of gold was exited by laser-light photons at 532 nm, the photon energy was 

readily converted into heat because of efficient transmission of the absorbed energy to the 

internal energy of the gold target, due to the strong electron-phonon interaction. For 

example, during a single laser pulse, one gold particle in nanoscale dimension was 

considered to absorb consecutively more than 1000 photons and was heated to its boiling 

point.101 

In Figure 56a the absorption spectra of Ag0.83Au0.17, Au0.71Ag0.29 and 

Au0.53Ag0.47 nanoparticles, prepared under identical conditions, are shown, labeled as (b), 

(c) and (d), respectively. Distinct peaks are observed, clearly at 431, 465 and 487 nm, 

respectively. These plasmon peaks are located at an intermediate position between the 

gold and the silver surface plasmon bands. The single plasmon band implies that the 

particles are spherical rather than rods111 or triangles112,113, which would have two or 

three plasmon peaks, respectively. It also implies the formation of an alloy between silver 

and gold particles rather than of a mixture, which would simply have a combination of 

their spectra (two distinct plasmon bands corresponding to each metal). In order to prove 
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the alloy formation in the gas phase, the optical absorption of the physical mixture of 

gold and silver nanoparticles was compared to that of the corresponding alloy. In Figure 

57, the UV-visible spectra of the alloy and the mixture having the same molar ratio of Au 

(71) / Ag (29) is shown. The mixture had two distinct peaks at 421 and 524 nm 

corresponding to the absorption plasmon of the silver and the gold nanoparticles, 

respectively, while the alloy nanocomposite shows only a single plasmon peak at 465 nm. 

The plasmon peak depends on the composition of the alloy prepared. It shifts linearly to 

higher energy with increased silver content in the nanocomposite alloy, as shown in 

Figure 56b.  

The linear relationship between silver content in gold-silver alloy and its 

surface plasmon energy has been extensively observed for many alloys prepared by 

different chemical reduction routes in liquids; for example, in monophasic systems,93,114 

in biphasic systems,95,96 and in microemulsion systems,97 also by radiation chemistry115 

and by laser ablation in solution.105,116 The morphology of deposited Ag-Au 

nanocomposite alloy, observed by SEM, is shown in Figure 58a. These particles were 

deposited on carbon substrates placed inside the preparation chamber. The average 

particle size decreased with increasing gold content in alloy nanoparticles. Similar results 

have been observed by Koda et al. on pure gold particles.101 They showed that gold 

particles under laser irradiation (532 nm) exhibited changes in their shape followed by 

size reduction. The EDX analysis spectrum of the alloy nanoparticles corresponding to 

SEM micrographs are shown in Figure 58b, where the relative intensity of Au (Mα) to 



www.manaraa.com

135 

 

Ag (Lα) lines changes as the molar ratio changes, in good agreement with the ICP 

results. 

Gold and silver metals have a face-centered cubic (FCC) crystal structure with a 

similar lattice constant of 0.408 and 0.409 nm, respectively.117,118 Due to this fact, they 

are thermodynamically favorable to mix and form a miscible homogenous solid solution 

with a FCC crystal structure.119 The X-ray diffraction patterns of Ag, Au and Au-Ag 

nanoparticles are shown in Figure 59. It is clear that the characteristic planes (111), (200), 

(220), (311) and (222) of FCC crystal lattice is retained in all nanoparticles, similarly to 

bulk crystal structure. However, the relative diffraction intensity was different. For 

example, the (200) plane intensity at scattering angle (2θ = 44.1 deg.) increased relative 

to (111) plane, with increasing gold molar fraction in the alloy nanocomposites. This 

ratio ranges from 0.377 for pure silver nanoparticles to 0.543 for pure gold nanoparticles. 

Moreover, broader diffraction peaks were observed compared to bulk, owing to their 

small particle size. 

High resolution transmission electron microscopy (HRTEM) micrographs are 

shown in Figure 60 for dispersed Ag0.71Au0.29 in water as prepared by the LVCC method. 

Seen in the micrographs in Figure 60 are examples of different structures’ defects; the 

particles appeared to be faceted rather than being spheres. This can be explained by 

different growth rates of silver on various planes of gold particles and vice versa. 

Stacking faults, as well as single and multiple twins, were also observed. These kinds of 

defects are very common in metallic alloys. In addition to the above defects, the particles 

were observed to be “wired” together. 
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Effect of laser irradiation on alloy nanocomposites in water medium under different 

wavelengths. 

 

The water-dispersed gold and silver nanoparticles were irradiated with the 

fundamental (1064 nm) as well as the second harmonic generation (532 nm) of a pulsed 

Nd:YAG laser at (4.25-7.56) x 107 W/cm2 for 20 min each. In Figure 61 the UV-visible 

absorption spectra, as well as the corresponding STEM micrograph, are shown for gold 

nanoparticles as prepared after 532 nm irradiation and after 1064 nm irradiation, 

respectively. Based on these figures, using the 532 nm light-source, particle sizes 

decreased, forming almost mono dispersed particles, compared to the non-irradiated 

particles, where a broad size distribution and nonspherical particles were observed. The 

corresponding absorption spectra shown in Figure 61 confirms that the plasmon peak was 

shifted from 540 to 520 nm. According to the Mie theory, this result indicates that the Au 

particle size was reduced. Also the absorption at wavelengths higher than 600 nm gets 

smaller after irradiation, which may indicate a decrease in the agglomeration of particles 

after being irradiated. Similar results have been observed by Koda et al.101,120, where a 

chemically-prepared gold colloid was irradiated by the second harmonic generation (532 

nm) of a pulsed Nd:YAG laser, which resulted in a size reduction. On the other hand, 

when 1064 nm laser beam was used, the average particle size decreased, but not as much 

as with the 532 nm as seen from the STEM. The optical absorption also has been 

changed, where the plasmon band is slightly blue shifted from 540 to 528 nm. These 

results indicate, as mentioned above, that using 532 nm radiation results in particle size 
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reduction due to light absorption by gold followed by melting and vaporization, whereas 

in case of 1064 nm radiation only vaporization takes place. The previous results were 

confirmed when silver nanoparticles were irradiated with both wavelengths having the 

same output laser power. The STEM of silver nanoparticles before and after irradiation 

with 532 nm and 1064 nm are shown in Figure 62. By comparing the three micrographs, 

it is clear that the size was reduced upon either irradiation with (532 nm or 1064 nm). The 

size reduction after 532 nm irradiation is similar to that after 1064 nm irradiation, 

indicating that the interaction between Ag and light (532 nm and 1064 nm) may be 

similar. These results were also confirmed from the absorption spectra, where the silver 

plasmon peak shifted from 408 to 395 and 396 nm after 532 and 1064 nm irradiation, 

respectively. Also the particle agglomeration decreased after irradiation as indicated by 

the decrease in absorption at longer wavelengths (> 500 nm). However, in the case of a 

1064 nm irradiation there was more agglomeration compared to irradiation at 532 nm. 

This was observed as a broad peak absorption. The effect of irradiation wavelengths on 

water-dispersed nanoalloy particles was also examined under TEM. In Figure 63, the 

TEM micrographs for Ag0.71Au0.29 nanoparticles are shown with and without irradiation 

in water medium. The particles, as prepared from the LVCC in the vapor phase (Ar), 

were nonspherical with facets and broad size distribution. After being irradiated with 532 

nm for 20 min (12,000 laser pulses) in water, size reduction was observed from the TEM 

results, where melting, reshaping, and vaporization took place to yield almost 

monodispersed spherical particles. However, at the 1064 nm radiation only small size 

reduction happened in addition to reshaping to spherical particles. It was also observed 
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that a broad size distribution still remained, even after 1064 nm irradiation. In Figure 64 

the HRTEM for Ag0.71Au0.29 nanoparticles are shown with and without irradiation, which 

confirms the optical absorption data. 

A comparison between the absorption spectra for Ag0.83Au0.17, Au0.71Ag0.29 and 

Au0.53Ag0.47 nanoparticles irradiated with 532 nm and 1064 nm is given in Figure 65. The 

surface plasmon bands for Ag0.83Au0.17, Au0.71Ag0.29 and Au0.53Ag0.47 nanoparticles were 

blue shifted from 431, 465 and 487 nm to 410, 440 and 460 nm, respectively after 20 min 

irradiation with 532 nm. On the other hand, the plasmon bands were shifted to 419, 427 

and 441 nm, respectively after 20 min irradiation with 1064 nm. The positions of the 

plasmon peaks under different compositions and different irradiation conditions are given 

in Table 7. The broadening in the UV-visible absorption spectra for Ag-Au particles 

decreased after irradiation, indicating again the decrease in agglomeration and the 

colloidal formation. The blue shift was also observed after irradiation with either 532 or 

1064 nm indicating particle size reduction for all the compositions studied. 
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Figure 52. Comparison between Au mole fraction in the bulk 
target and in the prepared nanoparticles using the LVCC 
method. 
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Table 6. Comparison between Au content in the bulk powder 
mixtures and in the nanoparticles using the Inductive 
Coupled Plasma Spectroscopy (ICPS). 

 
Composition Bulk Au mole 

fraction 
Nanoparticle
s Au mole 
fraction 

Difference 
between 
bulk and 
Nano 

Ag 0.83 Au 0.17 21.2 16.6 3.61 % 

Ag 0.71 Au 0.29 35.6 28.7 4.15 % 

Ag 0.53 Au 0.47 51.8 47.3 10.51 % 
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Figure 53. SEM of as-deposited Au nanoparticles prepared by 
the LVCC method in Ar atmosphere, the scale bar is 200 nm 
(a), and the UV-visible absorption spectrum of Au 
nanoparticles dispersed in water (b). 

(a) 

(b) 
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Figure 54. SEM of as-deposited Ag nanoparticles prepared by 
the LVCC method in Ar atmosphere, the scale bar is 200 nm 
(a), and the UV-visible absorption spectrum of Au 
nanoparticles dispersed in water (b). 

(a) 

(b) 
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Figure 55. STEM for a) gold nanoparticles and b) silver 
nanoparticles dispersed in water after they were prepared in 
the gas phase by the LVCC method. The scale bar is 100 nm. 

a) b) 
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Figure 56. a) UV-visible absorption spectra of Ag-Au 
nanoparticles prepared by the LVCC method and b) Position of 
surface plasmon peaks plotted as a function of Au content in 
the alloy nanoparticles.  
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Figure 57. UV-visible absorption spectra of a) Au0.29Ag0.71 

alloy nanoparticles, b) physical mixture of Au and Ag 
nanoparticles with the same molar ratio found in the alloy.
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Figure 58. SEM images and EDX spectra for a) Au 0.47Ag0.53, b) 
Au 0.29Ag0.71 and c) Au 0.17Ag0.83 nanoparticles. The scale bar is 
200 nm.  
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Figure 59. X-ray diffraction of Ag-Au nanoparticles prepared 
by the LVCC method in Ar atmosphere. 
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Figure 60. HRTEM for dispersed Ag0.71Au0.29 in water as prepared 
by the LVCC method, the scale bar is 10 nm. 
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Figure 61. STEM and the corresponding UV-visible spectra for 
Au nanoparticles a) as prepared, b) after 20 min irradiation 
with 532 nm and c) after 20 min irradiation with 1064 nm, 
respectively. The scale bar is 100 nm. 
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Figure 62. STEM and the corresponding UV-visible spectra for 
Ag nanoparticles a) as prepared, b) after 20 min irradiation 
with 532 nm and c) after 20 min irradiation with 1064 nm, 
respectively. The scale bar is 100 nm. 
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Figure 63. EDX spectra and TEM images for Ag0.71Au0.29 dispersed 
in water a) as prepared, b) after 20 min irradiation with 
532 nm and c) after 20 min irradiation with 1064 nm, the 
scale bar 100 nm. 
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Figure 64. HRTEM images for Ag0.71Au0.29 dispersed in water a) 
as prepared, b) after 20 min irradiation with 532 nm and c) 
after 20 min irradiation with 1064 nm, the scale bar 10 nm. 
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Figure 65. UV-visible spectra of a) Au 0.17Ag 0.83, b) Au 0.29Ag 
0.71 and c) Au 0.47Ag 0.53 after irradiated with 532 nm (solid 
line) and 1064 nm (dotted line) for 20min, respectively. 
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Table 7. Surface plasmon absorption peaks for Ag-Au system 
under different irradiation conditions. 

 
     As prepared After 532 nm 

irradiation 
After 1064 

nm 
irradiation 

Ag 406 395 396 

Ag0.83Au0.1

7 
431 410 419 

Au0.71Ag0.2

9 
465 440 427 

Au0.53Ag0.4

7 
487 460 441 

Au 540 519 528 
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Chapter 4 Condensation of Supersaturated Vapors on Mg Nanoparticles 
 

4-1 Introduction 
 

Since the early work of Kohler121 in 1936, who put forth the first theory of 

condensation on completely soluble particles, different models of condensation 

nucleation on aerosols (heterogeneous nucleation) have been proposed. Fletcher,122 in 

1958, investigated the heterogeneous nucleation on insoluble aerosol particles. The 

properties of both the working vapor as well as the preexisting nucleus play an important 

role in heterogeneous nucleation. For example, the condensation of supersaturated vapor 

on neutral particles was influenced by the surface properties, the size of the particles, and 

the contact angle between the newly formed cluster and the aerosol particle. The 

condensation onto charged particles is further influenced by the sign and the amount of 

the charge, as well as by the dipole moment of the condensed vapor molecules. 

Here, in the heterogeneous nucleation, the critical clusters always have a lower 

surface free energy barrier compared to that of the homogeneous nucleation due to the 

presence of a preexisting surface (nucleus particle). Therefore, at and above a given 

supersaturation S, the preexisting nucleus particle, having a radius of a, could have 

enough condensable monomers adsorbed on the surface to form a stable critical cluster. 

However, below a given S, fewer monomers could also be deposited to form a cluster, 

but these monomers would evaporate eventually because of the decrease in the free 



www.manaraa.com

156 

 

energy on association of these monomers was not sufficient to overcome the surface 

energy barrier to form a critical cluster.  

For a given S, particles having size of a or larger are activated via heterogeneous 

nucleation and can then undergo growth by condensation of more monomers onto critical 

clusters. For particles having a radius smaller than a in size, these particles are not 

activated and monomers deposited on the surfaces eventually evaporate back to the vapor 

phase. Smorodin et al.123 have found that the energy and rate of heterogeneous nucleation 

of polar liquids on heterophilic aerosol particles at a constant supersaturation, depend on 

the particle size. For larger particles, the rate is higher due to the role of increased 

numbers of the active sites on the surfaces. 

It is well known that ultrafine particles (with diameter < 100 nm) play an 

important role in atmospheric processes such as cloud formation. Therefore, it is 

important to study the nucleation process on these particles. Unfortunately, only scant 

data are available for the condensation of supersaturated vapor onto neutral or charged 

particles with diameters in the range of tens of nanometers. Recently, new tools have 

been developed for the study of heterogeneous nucleation. For example, the condensation 

nuclei counter (CNC) has been developed to measure the number concentration of 

ultrafine particles, onto which a working fluid was allowed to condense. The particles 

were then grown to a size, where they could effectively scatter light and be detected. 

Recently, Mavliev et al.124,125 have used the CNC to study the heterogeneous nucleation 

of different compounds on various nuclei’s compositions (NaCl, KCl, AgCl and Ag 

particles). Additionally, they also reported the transition from heterogeneous to 
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homogeneous nucleation for dibutylphthalate on NaCl and WOx particles. Lee et al.126 

have also studied the condensation of the same working fluids on carbon particles. Chen 

et al.127,128 have used the flow cloud chamber (FCC) to study the condensation of 

supersaturated vapors of n-butanol and water on charged and neutral monodispersed 

nanoparticles. 

Despite the advantages of using the condensation nuclei counter (CNC), the 

calculation of the heat and mass transfer equations was very difficult due to its design 125. 

Thus, the supersaturation could not be estimated accurately. Meanwhile, using the 

upward thermal diffusion cloud chamber (DCC), the supersaturation, the temperature and 

the pressure inside the chamber could be obtained accurately by solving the heat and 

mass flux equations. 

The DCC has been extensively used to study different types of nucleation like 

single and binary homogeneous nucleation,29,30,129 ion-induced nucleation130,131 and 

photo-induced nucleation.132 To the best of our knowledge, very little data has been 

reported on the condensation of supersaturated vapors on nanoscale particles in the DCC. 

Caldwell et al.133 have reported preliminary results for the nucleation of ethanol vapor on 

Al nanoparticles in the DCC. 

In this chapter, a new method was developed that coupled the nucleation process 

in the DCC chamber (as discussed in chapter two) with the laser vaporization controlled 

condensation technique (LVCC-discussed in chapter three). This was done by simply 

vaporizing a target, which could be a metal or a semiconductor, in a condensable vapor of 

known supersaturation, temperature, and pressure. 
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It is worth mentioning here that in the process of pulsed-laser ablation of solid 

targets, highly energetic species are ejected from the target surface forming a plasma 

plume. Its energy often reached up to several hundreds of eV. Rapid homogeneous phase 

transition occurs directly from solid to gaseous phase containing a mixture of individual 

atoms and multi-atom clusters with and without charge. This is attributed to the 

significant overheating of the material exposed to a short laser pulse.134 

The research presented in this chapter involved the condensation of supersaturated 

trifluoroethanol (TFE) vapor on magnesium (Mg) nanoparticles generated by the second 

harmonic light of a pulsed Nd:YAG laser inside a diffusion cloud chamber. The influence 

of different factors were studied such as the vapor supersaturation, the total pressure, and 

the electric field inside the chamber as well as the laser fluence on the nucleation 

behavior of TFE vapor on Mg particles.  
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4-2 Experimental 
 

A modified diffusion cloud chamber (DCC) was used in these experiments. A 

detailed description of DCC can be found in chapter two. The experimental setup is given 

in Figure 66. A brief description is given here. The chamber consists of two aluminum 

plates separated by a circular glass ring. A magnesium rod (Aldrich, 99.9+ %) of 

diameter (6.0 mm) and height of (11.5 mm) was machined and cut with an angle of 45 

degree, then placed on the center of the bottom plate. A shallow pool of trifluoroethanol 

(TFE) (75 mL, Aldrich NMR grade, 99.5+ %) was introduced to the bottom plate. The 

Mg rod was chemically isolated from the TFE liquid by a Teflon block. The total 

pressure inside the chamber was adjusted to about 700 Torr, at room temperature, by 

introducing an inert, noncondensable gas (He, 99.999%) inside the chamber. A 

temperature difference was set between the top and the bottom plates, to control the 

supersaturation (S) of the vapor, by circulating the proper fluids. In these experiments, the 

vapor supersaturation of TFE was adjusted below that required for homogeneous 

nucleation. A single pulse (1.6 x 108 W/cm2) was fired from a Quanta ray Nd:YAG laser 

(532 nm, 2 ns pulse width) focused on the Mg target. The nucleating droplets were 

counted by observing the forward scattering of light from the droplets falling through a 

horizontal He-Ne laser beam traversing the chamber. The He-Ne laser beam was set 

above that of the Nd:YAG laser to detect droplets of TFE-coated Mg nanoparticles. A 

power supply (Bertan 205-05R) was used to apply an electric field (10-1000 V) between 

the chamber plates to control the nucleation behavior of charged nanoparticles. 
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4-3 Results and Discussion 
 

Heterogeneous nucleation of supersaturated trifluoroethanol vapor on Mg 

nanoparticles, prepared by laser vaporization, has been studied under different 

experimental conditions, such as pressure, supersaturation, laser power, and electric field. 

The DCC chamber was used here as an amplifier to detect nanoparticle/TFE droplets that 

grow rapidly to micron sizes, where they can effectively scatter light and be detected 

through the condensation of the working fluid vapor (TFE). 

When a laser pulse hit the Mg metal target, the temperature on the metal surface 

was elevated very quickly within a few nanoseconds, resulting in metal vaporization into 

atoms and clusters in the ground and excited states, with some of the generated particles 

carrying a net charge. At this high metal vapor density, nanoparticles started to form via 

the nucleation process followed by particle thermalization via collisions with He as well 

as TFE vapor. In the presence of supersaturated vapor of TFE, some energetic Mg 

particles would be favored sites for condensation and growth.  

In a typical experiment, the supersaturation of the TFE vapor, inside the chamber, 

was always kept below that required for homogeneous nucleation (S = 2.5 at T = 269.4 

K). As a result, no droplets were observed when the experiment ran without generating 

Mg nanoparticles. However, it was also important to exclude the possibility of 

photoinduced nucleation; in this experiment, a laser pulse of 532 nm was fired inside the 

chamber without hitting the Mg target. No nucleation events were observed, implying the 

absence of any photoinduced nucleation contribution. Additionally, when the laser pulse 
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was fired on the Mg target, no droplets were observed when there was no temperature 

gradient between the top and bottom plates of the chamber. This indicates that there was 

insufficient TFE vapor to condense on the Mg nanoparticles.  

In these types of experiments, a wave of nucleating droplets was observed 

following the laser pulse. The data were recorded as a distribution of the number of 

droplets over time as detected by the photomultiplier in the chamber. The duration of this 

nucleation wave varied depending on the experimental conditions. This distribution was 

expected since the Mg nanoparticles, which were generated by laser vaporization, would 

take some time to grow and diffuse until they reached the nucleation zone (0.7 H) in the 

chamber. During this time the small particles (Mg/TFE) would reach the detection area 

first followed by the big ones. At some point, a maximum was reached, after this point 

the number of nuclei capable of inducing the heterogeneous nucleation started to drop, so 

the nucleation rate decreased until it reached zero. 

Time profile scans of activated Mg nanoparticles at various supersaturations 

(1.385-1.826) of TFE are shown in Figure 67. The maximum supersaturation and 

temperature at the nucleation zone were calculated by solving the mass and heat flux 

equations. The total number of droplets (proportional to rate of nucleation) decreased by 

decreasing the supersaturation of the TFE vapor in the chamber as shown from the insert 

figure. In these experiments, an electric field of 5.54 X 103 V/m was applied between the 

chamber plates and a total pressure of 675 Torr was used. The nucleation peak was 

shifted to longer times as the supersaturation ratio of the TFE vapor inside the chamber 

was decreased. At TFE vapor supersaturation of 1.829, 1.580 and 1.387, the maximum 
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nucleation rate occurred after about 45, 52 and 72 sec. from the laser pulse, respectively. 

The number of particles that vaporized from the Mg rod after each laser pulse was 

relatively constant since the same laser power was used. Therefore, from the above 

results, it is evident that at a high supersaturation (S = 1.829) most of the Mg 

nanoparticles are activated and the nucleation rate reaches its maximum quickly. On the 

other hand, at a low supersaturation (S = 1.387) only big particles are activated, since 

small ones are difficult to activate at low supersaturations. In this case the nucleation rate 

reaches its maximum at a longer time.  

The induction time, which is the time required from the laser pulse until the onset 

of the nucleation process, increased with decreasing vapor supersaturation inside the 

chamber. At a low supersaturation ratio, not all particles were activated. Small particles 

were difficult to get activated at a low supersaturation, and so they diffused faster through 

the nucleation zone without reaching the critical sizes. However, in the case of big 

particles, supersaturated vapor condensed easily on them and they reached the critical 

size and grew faster. As a result, it took those particles more time to grow and diffuse to 

the nucleation zone.  

In the case of high supersaturation, most of the particles generated by the laser 

pulse did reach the critical size and grew to macroscopic sizes through condensation, 

even the smaller ones. This proposed mechanism could explain the lower induction time 

needed to observe nucleation in the case of a low supersaturation. The above results are 

in good agreement with what Chen et al.127,128 have reported. They showed that the 

critical supersaturation decreased with increasing the particle size. 
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The relationship between the vapor pressure and the particle diameter, when the 

process of condensation starts to prevail over the evaporation process, is given by 

Kelvin’s equation:124 

KelvindRT
M4Sln σ

ρ
=   Eq. 4-1 

Where dKelvin is the Kelvin diameter, σ is surface tension, M is the molecular weight, ρ is 

the density of liquid, R is the universal gas constant, T is the temperature, and S is the 

supersaturation. At given S values, particles greater than the Kelvin diameter are 

activated and followed by condensational growth. Particles smaller than the Kelvin 

diameter are not activated and eventually evaporate.124 The Kelvin diameters were 

calculated using (Eq. 4-1) as 4.5, 5.9 and 8.3 nm for S values of 1.829, 1.580 and 1.387, 

respectively. Therefore, it is clear that by increasing the supersaturation, the Kelvin 

diameter decreases, and more particles should be activated and grow. Similar results have 

been observed by Mavliev et al., who coupled a modified CNC with the DMA to study 

the heterogeneous nucleation.125 When they increased the pressure of octadenoic acid in 

the CNC, which is equivalent to supersaturation, the size distribution of NaCl particles 

increased smoothly to larger sizes. They also observed that the dispersion of the 

distribution increased with increasing the vapor condensation, implying the formation of 

big condensable droplets. 

The electric field effect on the droplet formation at a given supersaturation and 

pressure has also been investigated. As mentioned before, during laser vaporization of a 

metal target an estimate of 106 ions and 1014 atoms within a 10 ns laser pulse were 
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generated.11 Therefore, it is expected to see a significant effect by applying an electric 

field between the chamber plates. Displayed in Figure 68 are different time profiles 

measured at different electric fields (0.0-15.38 V/m) at a constant TFE supersaturation 

ratio of 2.39 and a total pressure of 644 Torr. It is observed that the time-width of the 

nucleation cloud decreased as the electric field inside the chamber was increased. This 

behavior can be attributed to the total number of the charged particles reaching the 

nucleation zone by drift velocities, which depends on their mobilities and the magnitude 

of the applied electric field. In the absence of an electric field, the motion of the neutral 

and charged particles were described in terms of diffusion. The observed nucleation 

events reflect the number of particles reaching the nucleation zone by diffusion. By 

increasing the potential difference between the top and bottom plates, the electric 

mobility of the charged clusters increased. The electrical mobility (µi) of a charged 

cluster of size i is given as: 

E
i

i
ν

=µ
  Eq. 4-2 

Where νi is the velocity by which these clusters drift through the nucleation zone and E is 

the electric field. By assuming that each laser pulse will generate a relatively constant 

number of neutral and charged nanoparticles, thus, at high electric field, most of the 

charged Mg particles were swept quickly, due to their high electrical velocity through the 

nucleation zone before they were activated and grew into macrosize droplets. On the 

other hand, when the electrical velocity of the laser-generated Mg particles is small, most 

of the charged particles spent longer time with TFE supersaturated vapor and were 
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activated. For example, the nucleation cloud formed by Mg nanoparticles under 0 V/m 

lasts for more than 50 seconds while when an electric field of 15.38 X 103 V/m is 

applied, the nucleation cloud lasts for about 30 seconds. 

Shown in Figure 69 is the total number of droplets as a function of the electric 

field applied in the DCC chamber. The nucleation behavior was studied under an electric 

field ranging from (-15.38 X 103 to +15.38 X 103 V/m). It is obvious from the figure that 

the number of droplets was almost constant, regardless of the polarity of the electric field 

applied. These results confirmed that both the positive and negative particles had almost 

the same ability to induce the condensation of TFE vapor. Similar results have been 

observed by Chen et al.127,128, who found that the condensation of supersaturated vapor 

on singly positive/negative charged particles had no obvious charge effect and sign 

preference. In Figure 69 a sharp decrease in the droplet number is shown as the applied 

electric field increased (till 0.77 X103 V/m), followed by a smooth decrease on both sides 

(the positive and the negative fields) as the field increased more. 

The effect of pressure on the condensation behavior of supersaturated TFE vapor 

(S = 1.823) on Mg nanoparticles has also been studied at a constant electric field of 0.154 

X 103 V/m. In Figure 70(a), the time profiles at three different pressures (328, 620 and 

934 Torr) are displayed. It is clear that the width of the nucleation cloud increased with 

increasing the pressure. In the laser vaporization techniques, the laser-induced plasma 

plume depended mainly on the ambient gas used and on its pressure. Furusawa et al.135 

have studied the laser ablation process of Al target in different ambient gases (He, N2, 

CF4, and CH4). They have observed that when He gas was used, the size of the plume 
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was the largest compared to the rest of gasses used due to the confinement effects. The 

maximum velocities of ablated material was estimated from molecular dynamics 

simulations as (500-1500 m/s).134 At higher pressure the laser plume expansion in the 

chamber is suppressed and confined, compared to that at a lower pressure, due to 

collision frequency enhancement in the plume as well as the thermalization between Mg 

particles and He-TFE vapor mixture. When the chamber pressure was reduced to 328 

Torr most of the small Mg particles diffuse quickly through the nucleation zone before 

the TFE vapor condenses on them. However, the rest of the particles are activated and 

detected by the light scattering method. On the other hand, at relatively a high pressure 

934 Torr, most of the generated particles ejected from Mg metal surface, are confined in 

space and hence the collision frequency between them and the surrounding molecules is 

enhanced. The residence time of the particles to grow, in the case of a high pressure, is 

relatively longer than that in the case of a low pressure. This can explain the higher 

droplets count at 934 Torr compared to the droplet count at 328 Torr pressure in the 

chamber. 

In Figure 70(b) the relation between the nucleation rate and the chamber pressure 

is also shown. A nearly linear relationship is observed between number of droplets 

detected and the total pressure inside the chamber.  

All the above-mentioned experiments were carried out at a constant laser power 

of about 1.6 X 108 W/cm2. Finally, the effect of laser power at constant pressure (P = 

665.2 Torr), supersaturation (S = 1.825), and electric field (0.154 X 103 V/m) was 

investigated. It is worth mentioning that in the process of pulsed laser ablation of solid 
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targets, highly energetic species are ejected from the surface; their energy often reaches 

up to several hundreds of eV within few picoseconds.135 Wie et al.136 have used the 

classical homogeneous nucleation theory to describe the melting process of a superheated 

solid material induced by ultrafast laser pulse irradiation. Their results show that Al metal 

should melt within several tens of picoseconds upon laser irradiation. 

Displayed in Figure 71(a) are the nucleation time profiles under different laser 

power density. It is clear from the figure that by increasing the laser power density, the 

number of activated particles drops. Two important factors could control this effect; the 

mass concentration (MC), and the number concentration (NC) of the particles generated 

during the laser pulse. Using a high power density, more material (MC) is vaporized than 

in the case of a low power density. As a result, bigger particles are ejected that could 

reach droplet-like sizes, and a rougher surface is left. However, the particle number 

concentration (NC) at a low power density was larger than that at a high power density. 

Recently, similar results have been observed by Zhigilei et al. who have performed 

molecular dynamics (MD) simulations of laser ablation of organic solids.134 They have 

found that, below a certain laser fluence, primarily single molecules are desorbed while 

above this threshold, a collective ejection or ablation took place in which large molecular 

clusters form a significant portion of the ejected plume. This means that at low power 

density a large number of particles are generated with a relatively small size distribution 

that could activate the condensation of TFE vapor to form detectable droplets. On the 

other hand, the low number of droplets observed by using a high laser power, could be 

explained by the formation of a plume. The laser-generated plume confined a high metal 
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vapor density, which facilitates the formation of large particles as well as aggregation of 

small particles. At low laser power the induction time was observed to be smaller than 

that at a high laser power due to the fact that small particles diffuse quickly to the 

nucleation zone (low power density case), while large particles slowly diffuse to the 

nucleation zone (high power density case). The relation between the laser power density 

and number of droplets were demonstrated in Figure 71b. 
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Figure 66. Experimental setup for the Diffusion Cloud 
Chamber (DCC) used to study heterogeneous nucleation of 
trifluoroethanol vapors on Mg nanoparticles. 
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Figure 67. (a) Time profile showing number of droplets of TFE vapor (P = 674.7 Torr, 
Tmax= 281.4 K, and E=5.54 X 103 V/m) condensed on Mg nanoparticles after a single 
laser shot (1.6 X 108 W/cm2) at different supersaturations. (b) Relation between total 
numbers of droplets of TFE condensed on Mg nanoparticles as a function of 
supersaturation inside the chamber. 
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Figure 68. Time profile scan showing number of droplets of 
TFE vapor (Smax = 2.39, Tmax= 269.0 K, P=644.2 Torr) condensed 
on Mg nanoparticles after a single laser shot (1.6 x 107 
W/cm2) under different electric field applied to the DCC. 
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Figure 69. Relation between electric field applied to DCC 
and total number of droplets of TFE condensed on Mg 
nanoparticles. 
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Figure 70. (a) Time profile showing number of droplets of 
TFE vapor (Smax = 1.823, Tmax= 277.6 K, E=0.154 X 10

3 V/m) 
condensed on Mg nanoparticles after a single laser shot (10 
mJ/pulse) at different pressures. (b) Relation between total 
numbers of droplets of TFE condensed on Mg nanoparticles as 
a function of pressure inside the chamber. 
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Figure 71. (a)Time profile scan showing number of droplets 
of TFE vapor (Smax = 1.825, Tmax= 277.8 K, P=665.2 Torr, E=0.15 
X 103 V/m) condensed on Mg nanoparticles after a single 
laser shot of different laser power. Insert (b) Relation 
between total number of droplets of TFE condensed on Mg 
nanoparticles as a function of laser power used to vaporize 
it. 
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Chapter 5 Gas Phase Polymerization on Nanoparticle Surfaces 

 

5-1 Part one: Polymerization Coupled with LVCC 

 

5-1-1 Introduction 
 

The interaction between organic vapors and laser generated plasma formed by the 

metal ablation process has been previously reported.36,137-145 Garvey and co-workers137-139 

have studied the laser-assisted interaction between Cu or Ti metal plasma and 

acetylene/acetone organic vapors. In these reactions a polymeric film was prepared. They 

demonstrated that the formation of this polymeric film was not only a thermal effect of 

the laser plasma, but also a catalyzing activity of the metal atoms. El-Shall and co-

workers140,146 have reported the synthesis of polyisobutylene bulk polymer catalyzed by 

the metal cations that are generated during the laser evaporation of a metallic target (Ti, 

Zr, or Sn). In these experiments, the metal ions were injected into a cooled liquid of 

isobutylene monomer, followed by the cationic polymerization reaction. Moreover, 

cationic polymerization due to charge transfer from Zn+ ion to isobutylene monomer in 

the gas phase has also been studied by Daly and El-Shall140,147 using the high-pressure 

mass spectroscopy (HPMS). Previously, Castleman141,142,148 and Duncan143-145 groups had 

utilized the laser–ablated plasma of several different metals to generate 

metallocarbohedrenes (M8C12) by introducing an appropriate hydrocarbon vapor. 
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During the laser ablation of a metallic target, ablated in the vapor phase that 

contains some hydrocarbon fraction, the injection of energetic metal atoms, ions, 

electrons, and neutral or charged multi atom clusters may initiate or catalyze several 

reactions, such as dehydrogenation, cyclization, disproportionation, or polymerization of 

organic monomers. However, the temperature at which these processes takes place 

(<1000 K) is much lower than that of the laser-evaporated metal plasma (~ 10,000 

K).36,140,146 In fact, the nature of the interaction between the metal plasma and the organic 

vapor depends on the experimental parameters such as the laser fluence, the nature of the 

metal, and the hydrocarbon monomer used.137,139 Under certain conditions, the interaction 

of the metal plasma with a gaseous hydrocarbon may result in dehydrogenation reactions 

or polymerization of the hydrocarbon. 

Recently, metal nanoparticles embedded in host polymer matrices have become 

the focus of increasing attention, because of the unique mechanical, optical, electronic, 

and magnetic properties of these materials.9 The synthesis of metal-polymer 

nanocomposites is usually accomplished in solutions through multi-step chemical routes. 

However, one-step synthesis of metal encapsulated in polymers is scarcely reported in the 

vapor phase. 

Most of the methods used to fabricate metal/polymer nanocomposites are limited 

by the particles’ coagulation in the polymer matrices.149 Therefore, coupling the LVCC 

method simultaneously with the polymerization reaction in the vapor phase, could 

improve the dispersion of nanoparticles in polyhydrocarbon matrices. Additionally, the 

laser vaporization techniques have potential advantages over the chemical based 
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techniques, including simple processing, solvent-free products, and full control over 

metal vapor flux depending on the laser power. 

The research presented in this section involved the formation of thin films of 

various nanoparticles (Pt, Ni and FeAl) encapsulated in poly (hydrocarbon)/carbonaceous 

films, by taking advantage of the laser-ablated plasma plume of these metallic targets in 

the polymerization reaction of butadiene-He gas mixtures. 
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5-1-2 Experimental 
 

The LVCC method, described in chapter three, was used to study the gas-phase 

polymerization of 1,3-butadiene. In these experiments, the LVCC chamber was filled 

with a gas mixture of He (inert) and 1,3-butadiene (reactive) at a certain composition. 

The concentration of the 1,3-butadiene monomer ranges from 1 to 15 % in helium. A 

high-grade helium gas (He, 99.999%) was used. The hydrocarbon, 1,3-butadiene, was 

purchased from Aldrich with a purity of 99+%. The total pressure in the chamber was 

adjusted around 1000 Torr. The temperatures of the top and the bottom plates were kept 

at 25 and 90 °C, respectively. In some experiments an electric field of (60 V/cm) was 

applied between the chamber plates. An illustration of the gas phase polymerization of 

1,3-butadiene using Ni nanoparticles is shown in Figure 72. In these experiments, the 

laser-generated plasma on the Ni target is believed to act as a catalyst for gas phase 

polymerization of 1,3-butadiene. Three different nanoscale materials were examined in 

these experiments, namely Ni, Pt and FeAl nanoparticles.  

The scanning electron microscopy (SEM), the energy dispersive X-ray 

spectroscopy (EDX) and the scanning transmission electron microscopy (STEM) analysis 

were done on a Quantum DS-130S Dual Stage Electron Microscope. A glass substrate 

was placed on the top plate of the chamber, to observe the morphology of the deposited 

materials under the SEM. The nanocrystalline component in the nanocomposite films was 

examined by X-ray diffractometer (XRD), using an X’Pert Philips Materials Research 
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Diffractometer with Cu Kα radiation. The polymeric resin component was examined by 

FTIR using the Nicolet 670 FT-IR spectrophotometer. 
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5-1-3 Results and Discussion 
 

The synthesis of FeAl/Polybutadiene nanocomposites in the vapor phase was 

done using the laser vaporization of FeAl target in 1,3-butadiene under well defined 

conditions of temperature and pressure. A rubbery black film was observed depositing on 

the top plate of the chamber shortly after the experiment started. Figure 73 and Figure 74 

display the TEM micrographs for the FeAl-polymer nanocomposites prepared from 1 and 

15 % of 1,3-butadiene in He, respectively. Nanoparticles of FeAl, with diameters of less 

than 20 nm, were observed randomly distributed, but well dispersed, inside an amorphous 

matrix of polybutadiene resin. It is clear from the TEM results that the amorphous matrix 

prepared with 15 % butadiene showed thick and dense coating properties for FeAl 

particles compared to that prepared with 1% butadiene concentration. This can be 

explained by the degree of polymerization, which depends on the monomer 

concentration. The more the concentration of the monomer, the thicker and more 

amorphous the deposit would be. The inserts in both figures display the selected area 

electron diffraction patterns (SAED) of these films. It is clear that with a low monomer 

concentration the FeAl nanocomposite has less amorphous structure compared to that 

with a high monomer concentration. This can be observed from the ringed structure in the 

electron diffraction pattern of 1% monomer, indicating the presence of some ordered 

structures (B2 crystal structure of FeAl particles) within the deposited film. At 15 % 

monomer, the SAED exhibits broad diffused rings, indicating that the resin was more 

amorphous which is in good agreement with the XRD results. In Figure 75 the x-ray 

diffraction patterns for the FeAl/polybutadiene film (prepared from 15 % 1,3-butadiene in 
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He) and the FeAl nanopowder are shown. It is evident that the FeAl/polybutadiene film is 

amorphous and has no crystal structure since the FeAl particles were embedded deep 

enough in the amorphous polymer as observed in the TEM results. The XRD data 

confirms the SAED and the TEM results. 

In Figure 76 the morphology of the as-deposited film is displayed. The film was 

composed of fine long chains, of about (30-50 nm) width, cross-linked together with 

network structures. In fact, the deposited resin had a different structure compared to the 

typical web-like structures observed for the metal nanoparticles deposited inside the 

LVCC chamber. The solubility of the deposited film has been examined in a wide variety 

of organic solvents (chloroform, benzene, toluene, acetone, carbon tetrachloride, DMSO 

and n-hexane). The results showed that these films were very difficult to dissolve in most 

common organic solvents. For example, the FeAl/polybutadiene film showed swelling, 

especially, in toluene with a high solubility resistance in the rest of the solvents used, due 

to its cross linked-structure nature as observed from the SEM results. The FTIR 

spectroscopy results did not show the absorption band at (2850-2950 cm-1), which is 

characteristic for the stretching vibrations of the (sp3C-H) group. These results also 

implied the cross-linked nature of the resin prepared. This resin contains a mixture of 

cross-linked polybutadiene with carbonaceous species. The polymerization of 1,3-

butadiene in the vapor phase could be initiated by more than one factor, such as the laser 

plasma and the laser-generated nanoparticle material that could act like a catalyst. 

It is worth mentioning that when an electric field of (60 V/cm) was applied 

between the chamber plates, during the preparation of FeAl composite with 1 % 1,3-



www.manaraa.com

182 

 

butadiene, short filament-like structures were observed on the top plate. On the other 

hand, when the monomer percentage was increased to 15% in helium, no filament-like 

structures were observed. These results were expected as discussed before in chapter 

three, where at 15% 1,3-butadiene the FeAl nanoparticles were completely shielded from 

the electric field applied between the chamber plates by the cross-linked resin, whereas, 

at 1% 1,3-butadiene the FeAl nanoparticles were slightly shielded from the influence of 

the electric field.  

Other nanocomposites, like Pt/polybutadiene, were also prepared under identical 

conditions of monomer concentration (15 % 1,3-butadiene in He), temperature gradient 

(∆T=65-70 ºC), and total pressure of about 1000 Torr. Figure 77 displays the scanning 

transmission electron micrographs (STEM) along with their EDX spectra analysis. It can 

be observed that the Pt nanoparticles were randomly dispersed, with some particle 

aggregations, embedded in a matrix of polybutadiene. The average and selected-area 

EDX analysis for Figure 77b (represented by arrows) are shown in Figure 77 c and d, 

respectively. It is evident form the EDX spectra that Pt particles were embedded in an 

amorphous polymer matrix, as presented by the selected-area spectrum, which is 

composed mainly of Platinum. The crystallinity of Pt particles in nanocomposites was 

examined by XRD as shown in Figure 78, where the diffraction patterns of the as-

prepared Pt nanoparticles and the Pt nanocomposites were given, respectively. Peaks in 

the diffraction pattern appearing at 2θ values of 39.75, 46.23, 67.47, 81.25 and 85.69 

corresponding to (111), (200), (220), (311) and (222) planes of the Pt cubic crystal lattice. 

The lattice constants were calculated for pure and nanocomposite Pt nanopowders, with 
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the values of 3.9243 and 3.9477 which were comparable with the bulk lattice constant of 

Pt (3.9231). The Pt nanocomposite pattern showed a broader diffraction peaks compared 

to that of a pure Pt nanoparticles. The broadening could be due to the presence of 

amorphous polymer coating on nanocrystalline particles. Nevertheless, the small Pt 

particle size could also contribute to the XRD peaks broadening; where laser vaporized Pt 

particles could be easily thermalized through collisions with 1,3-butadiene molecules, 

preventing them from further growth. The average particle size of Pt nanoparticles was 

estimated from Scherrer’s equation (Eq. 3-1) as 30 and 18 nm for pure and 

nanocomposites Pt particles, respectively. 

A similar morphology, as of FeAl/polybutadiene, was observed for 

Pt/polybutadiene nanocomposites, where network of structures composed of tangled 

branched chains (about 30-50 nm in width) are shown in Figure 79. 

Finally, the polymerization of 1,3-butadiene induced by the laser vaporization of a 

Ni target in a 15% 1,3-butadiene was studied. Figure 80(a-b) display the SEM 

micrographs of the as-prepared Ni/polybutadiene film with cross-linked chains and web-

like structures, as had been previously observed in the other systems studied. In Figure 

80c a photograph for a black deposit of Ni/polybutadiene film deposited on the top plate 

of the LVCC chamber is shown. The film exhibited some elasticity with a rubbery 

surface, which characterizes the polybutadiene polymer. 

The nanoparticles component in the nanocomposite film was confirmed by the 

XRD analysis. The diffraction patterns of pure Ni nanoparticles and Ni/polybutadiene 

nanocomposites are presented in Figure 81. The diffraction peak at (2θ = 44.47) assigned 
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to (111) plane of Ni crystal lattice is still observed in the Ni/polybutadiene 

nanocomposite, indicating the presence of Ni crystalline nanoparticles coated with an 

amorphous layer of polymer resin. 

In conclusion, similar results for plasma-initiated polymerization of 1,3-butadiene 

on different nanoparticle surfaces, regardless of their material were observed, indicating 

that the polymerization process is independent of nanoparticle material used and that the 

laser plasma induced the process. All nanocomposites prepared using FeAl and Pt or Ni 

nanoparticles showed the same cross-linked morphologies under the SEM, which made 

their solubility very minimal. Therefore, their molecular weight could not be determined 

using gel permeation chromatography (GPC) analysis or their structures using 1H-NMR 

spectroscopy. The amorphous polymer matrix was commonly observed in these prepared 

nanocomposites as illustrated from the results of TEM, ED, EDX, and XRD. 
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Figure 72. Experimental set-up for the LVCC chamber used in 
polymerization experiments. 
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Figure 73. TEM micrographs and electron diffraction patterns 
(insert) for FeAl nanoparticles embedded in polybutadiene 
matrix (prepared in 1% 1,3-butadiene in He). 
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Figure 74. TEM micrographs and electron diffraction pattern 
(insert) for FeAl nanoparticles embedded in polybutadiene 
matrix (prepared in 15 % 1,3-butadiene in He). 
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Figure 75. XRD for a) FeAl nanoparticles prepared in a 
mixture of He and butadiene (15%) and b) FeAl nanoparticles 
prepared in pure He by the LVCC method. 
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Figure 76. SEM of as-deposited FeAl/polybutadiene 
nanocomposite prepared by the LVCC method. Scale bar 2µ, 
2000 nm and 500 nm. 
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Figure 77. Scanning transmission electron micrograph (a-b) 
along with their EDX spectra analysis (c) for 
Pt/polybutadiene matrix, and (d) for Pt nanoparticles in 
butadiene matrix. 
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Figure 78. XRD for a) Pt nanoparticles prepared in a mixture 
of He and butadiene (15%) and b) Pt nanoparticles prepared 
in pure He by the LVCC method.
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Figure 79. SEM of as-deposited Pt-Butadiene nanocomposite 
prepared by LVCC method. Scale bar 2µ, 1000 nm and 500 nm. 
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Figure 80. Scanning electron micrographs of deposited Ni-
polybutadiene nanocomposite prepared by the LVCC method ( 
a,b) with scale bars of 2000 and 500 nm, respectively, and 
(c) a photograph of as-deposited thin black rubbery film in 
the chamber. 
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Figure 81. XRD for a) Ni nanoparticles prepared in a mixture 
of He and butadiene (15%) and b) Ni nanoparticles prepared 
in pure He by the LVCC method. 
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5-2 Part two: Free Radical Polymerization on Nanoparticle Surfaces 
 

5-2-1 Introduction 
 

A nanocomposite is a material that is composed of two or more phases, usually a 

polymer matrix containing particles with grain sizes of less than 100 nm. Nanocomposite 

materials have the attractive characteristics of polymers, like the noncorrosiveness, the 

light weight, and the mechanical properties, which when combined with the 

magnetic,150,151 optical,152,153 and electronic9 properties of the nanoparticles, lead to the 

fabrication of unique multifunctional materials. There are several methods that have been 

developed to synthesis these materials, such as those that use microwave plasma 

processing,154 sonochemical,155,156 and γ irradiation157,158 sources, as well as the sol-gel 

casting159,160 and mechanochemical methods.161 

Nickel nanoparticles have been used extensively in many applications, owing to 

its mechanical, catalytic, and magnetic properties.162 It has been also used in the 

fabrication of media storage and nanocomposite materials and more recently in hydrogen 

storage materials.  

Different techniques have been utilized to prepare polystyrene nanocomposite 

materials. For example, nickel polystyrene composites have been prepared by in situ 

reduction of Ni formate-polystyrene mixture by ultrasound irradiation.155 Moreover, 

microwave plasma polymerization was also used to prepare Fe-polystyrene composite 

from a mixture of styrene monomer and iron pentacarbonyl.154 The microwave plasma 

was used for the thermal decomposition of iron pentacarbonyl into Fe nanoparticles as 



www.manaraa.com

196 

 

well as in the thermal self-initiation polymerization reaction of styrene by free radical 

mechanism. There have been several reports about the magnetic and thermal properties 

for iron and iron oxide nanocomposites.154,159,160,163 In general, most of the prepared 

nanocomposites have been prepared from the liquid phase, yet no research has been 

reported from the gas phase. Gas-phase polymerization of styrene has been studied in the 

upward thermal diffusion cloud chamber.164,165 The results showed that styrene in the gas 

phase can be made to polymerize if its vapor is doped with an extremely small charge of 

peroxide initiator. To the best of our knowledge, the synthesis of Ni-coated polystyrene, 

by gas phase polymerization of styrene, has never been reported before.  

The research presented in this section involved the synthesis of Ni-coated 

polystyrene nanocomposite using a one-step method, in which gas phase polymerization 

of styrene vapor took place on the nanoparticle surfaces. 2,2’-Azobisisobutyronitrile 

(ABIN) was used as a free radical initiator, to initiate the polymerization of styrene vapor 

on Ni nanoparticle surfaces. 
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5-2-2 Experimental 
 

Ni nanoparticles were first prepared by the LVCC method, which is previously 

described in detail in chapter three. A thin film of Ni nanoparticles and free radical 

initiator (2,2’-Azobisisobutyronitrile ABIN Aldrich 98%) was prepared as follows: A 

70.7 mg ABIN was dissolved in 10 ml acetone (Aldrich 99.5+ %). The solution was then 

sonicated with 8.7 mg of Ni nanoparticles for 30 min, until the Ni nanoparticles became 

well dispersed in ABIN-acetone solution. The dispersed solution was kept in a Petri dish 

until it dried in the atmosphere. After the acetone was evaporated, a thin film of Ni 

nanoparticles coated with ABIN was formed on the walls of the Petri dish. The Petri dish 

was then placed inside the polymerization chamber. 

The experimental setup is shown in Figure 82. It consists of two main parts; the first 

part is the monomer-feeding source unit, where the styrene vapor is generated. The 

second part is the polymerization chamber, where the Ni nanoparticles were coated with a 

thin film of polystyrene. In these experiments, liquid styrene (Aldrich 99+%) was heated 

in a glass bubbler using a nichrome heating jacket to produce a continuous source of 

styrene vapor. The heated styrene vapor was then injected into the polymerization 

chamber through a copper tube. The styrene injection was done by setting temperature 

and pressure gradients between the polymerization chamber and the glass bubbler. The 

copper tube was also heated to prevent the condensation of styrene vapor before reaching 

the chamber. The temperature of the styrene liquid was maintained at about 353.15 °K, 

while the chamber temperature was maintained at about 373.15 °K. The temperature was 
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measured from different parts of the system using T-type thermocouple wires connected 

to a temperature readout. The experiment starts with purging the system with an inert gas, 

like helium, several times. Finally, the pressure was adjusted at about 40-50 Torr helium. 

Following this, the styrene was heated to 353.15 °K, where its vapor pressure was about 

91 Torr 166 higher than the chamber pressure. 

After the experiment, the Ni/polystyrene composites were dissolved in chloroform 

and reprecipitated in methanol. To ensure the purity of the Ni/polystyrene, the 

nanocomposites were washed and rinsed several times in order to get rid of any excess 

styrene monomers. 

Infrared spectroscopy analyses were done on Nicolet 670 FT-IR spectrophotometer. 

The 1H-NMR spectra were done on Varian Gemini 300 MHZ spectrometer. The polymer 

glass temperature (Tg) was determined using differential scanning calorimetry (DSC, TA 

instruments Q1000 series). The DSC measurements were done under nitrogen 

atmosphere at a heating rate of 10 °C/min and flow rate of 100 ml/min. The gel 

permeation chromatography (GPC) was used to determine the average number molecular 

weight and polydispersity of the polystyrene film. These measurements were done on 

Hewlett Packard Series 1100. All the previous techniques were used to characterize and 

confirm the polymeric component in the prepared Ni nanocomposite film. The 

morphology of the Ni/Polystyrene composite was determined by the scanning electron 

microscope. In this experiment, a few drops of Ni nanoparticle dispersed in ABIN-

acetone solution were placed on two glass slides and left to dry in the atmosphere; only 

one slide was exposed to the heated styrene vapor inside the polymerization chamber. 
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The morphology of the Ni-ABIN film on the glass substrate was examined before and 

after the polymerization of styrene. The x-ray diffraction (XRD) analyses for the as-

prepared nanocomposites were done on an X’Pert Philips diffractometer. Finally, the 

dispersity of Ni particles in polystyrene was examined by the STEM technique. 
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5-2-3 Results and Discussion 
 

A new method was developed to prepare polymer-coated nanoparticles in the gas 

phase. The preparation and characterization of Ni/Polystyrene nanocomposites was 

studied. The concept of this method is illustrated in Figure 83. First, the Ni nanoparticles 

were prepared by the LVCC method, which is previously described in detail in chapter 

three. The particles were then coated with ABIN initiator, which is a well-known free 

radical initiator for styrene polymerization in the liquid phase.167 The ABIN-coated Ni 

nanoparticles were heated enough to decompose the ABIN molecule into free radicals. 

The particles where then exposed to the heated styrene vapor. The generated free radicals 

would start to attack styrene molecules and initiated the polymerization reaction in the 

gas phase. The consumption of styrene monomers in the polymerization reaction ensured 

its continuous flow from the bubbler to the chamber since the pressure difference 

between them would remain approximately constant. Therefore, the experiment would 

stop once all the liquid styrene was thermally vaporized, at this point, there is no pressure 

difference in the system.  

The free radical polymerization mechanism for vinyl monomers, like styrene, can 

be found elsewhere.167 It is also important to mention that the probability for the thermal 

self-initiation styrene polymerization in the gas phase is also present in these 

experiments. The thermal self-initiation process of styrene is expected to yield a low 

molecular weight polymer, under the experimental conditions used of temperature and 

pressure, compared with the styrene polymerization with ABIN free radical initiator. For 

example, the temperature conditions in these experiments was set higher than the 
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temperature required to decompose and generate free radicals from ABIN (~ 60 °C)168 

but lower than the temperature required for thermal polymerization of styrene (~ 90 

°C)169 to ensure that mainly a free radical polymerization adduct initiated with ABIN. 

Displayed in Figure 84 are the FT-IR absorption spectra for styrene and 

polystyrene, which were purchased from Aldrich chemicals, along with the 

Ni/Polystyrene prepared by the gas phase polymerization. By comparing the three 

spectra, it was obvious that there was a perfect match between the Ni/Polystyrene 

composite and the pure polystyrene absorption spectra. The Ni/Polystyrene composite 

spectrum showed absorption features between 2850-2950 cm-1 corresponding to the 

stretching vibration of C-H bond (sp3 hybridization) absorption, which confirmed the 

opening of the vinyl group in styrene monomer (ph-CH=CH2) and the formation of 

polystyrene. The mismatch between the styrene and the prepared nanocomposite spectra, 

shown in Figure 84, also confirmed that.  

Another piece of evidence confirming the polymerization of styrene in the gas 

phase came from the proton NMR data. In Figure 85 the 1H-NMR spectra of 

Ni/Polystyrene nanocomposites along with that of polystyrene beads purchased from 

Aldrich chemicals are shown. The 1H-NMR spectra shows peak broadening, which is 

common in polymeric compounds due to the distribution of the chemical shift factor due 

to different proton couplings. There were no peaks observed between 5-6 ppm in 

Ni/polystyrene nanocomposite spectrum, which was indicative of styrene absence, since 

styrene has absorption at chemical shift values of 5.737 and 5.225 ppm.166 Two sets of 

absorptions were observed at chemical shifts between 6-7 ppm and between 1-2 ppm. 
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They were assigned to the aromatic protons of polystyrene rings and the protons of the 

sp3 carbons in the aliphatic portion of polystyrene, respectively. The prepared 

nanocomposites show more peak broadenings compared to reference polystyrene. This 

might be due to longer polymer chains.  

Displayed in Figure 86 is the morphology before and after styrene polymerization. 

It is clear from the SEM images that the texture of the deposits becomes rougher after the 

polymerization took place due to the coverage and formation of polystyrene on the Ni-

coated substrate. 

The average molecular weight of the prepared polymer was determined by GPC 

analysis. The results showed that the weight average molecular weight was about 76,000 

amu and the polymer polydispersity was 3.2. Shown in Figure 87 are the polymer size 

distribution, obtained from the GPC, for styrene and Ni/Polystyrene composite, 

respectively. It can be seen that a broad size distribution appeared between 6-9 min., 

which was assigned to the polystyrene. Meanwhile, for pure styrene a sharper peak 

appeared at a latter time, after 10 min. The styrene peak had a relatively narrow size 

distribution, due to its low molecular weight and small polydispersity. The glass 

transition temperature (Tg) for Ni-polystyrene composite was also measured. In Figure 88 

the DSC analysis is shown, where a Tg of 100.57 °C was obtained. The thermal stability 

of the prepared Ni/polystyrene was similar to that of the pure polystyrene (Tg = 100 

°C).168 

The metal component in the nanocomposites was examined by the x-ray 

diffraction analysis. The diffraction pattern of Ni nanoparticles before and after the 
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polymerization of styrene is shown in Figure 89. The diffraction peaks at the scattering 

angles (2θ) of 44.47, 51.79, 76.35 and 92.97 were assigned to (111), (200), (220) and 

(311) planes of face centered cubic (FCC) crystal lattice of pure Ni. After Ni particles 

were coated with polystyrene, the XRD pattern showed an amorphous diffraction pattern 

with some peaks at (2θ) equals 44.44 and 51.56 assigned to the (111) and (200) planes, 

respectively. This result confirms that crystalline Ni particles were embedded in 

amorphous matrix of polystyrene. The STEM micrographs shown in Figure 90, displays 

the dispersive nature of Ni nanoparticles embedded in the polystyrene matrix. Ni 

particles, with an average size of less than 100 nm, were randomly distributed in the 

polymer matrix with some particle agglomeration. 

In conclusion, this developed technique for the gas phase polymerization is a 

promising technique. For example, it could be used as an online polymer coating method, 

directly from the gas phase.  
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Figure 82. Experimental set-up for the gas phase 
polymerization of styrene. 
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Figure 83. A cartoon illustrating the concept of gas phase 
polymerization on nanoparticle surfaces. 
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Figure 84. A comparison between FTIR of a) PS standard, b) 
Ni-polystyrene and c) styrene monomer. 
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Figure 85. H-NMR spectra for a) Ni-Polystyrene 
nanocomposites and b) polystyrene from Aldrich. 
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Figure 86. a) Ni nanoparticles with the initiator (ABIN) 
before polymerization and b) Ni nanoparticles with the 
initiator after styrene polymerization. The scale bar is 10, 
5 and 1 µm from top to bottom. 

(a) Ni / ABIN (b) Ni / PS 
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Figure 87. GPC analysis for a) styrene monomer and b) Ni-
polystyrene. 
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Figure 88. DSC analysis for Ni-polystyrene film with Tg = 
100.57 °C. 
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Figure 89. XRD for pure Ni nanoparticles before coating with 
polystyrene (a) and Ni-polystyrene nanocomposites after 
coating (b). 
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Figure 90. Scanning transmission electron micrograph for Ni 
nanocomposite prepared by coating Ni nanoparticles with 
polystyrene, using the gas phase polymerization on 
nanoparticle surfaces.
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Chapter 6 Summary and Conclusions  
 

This research deals with the nucleation and nanoparticle’s formation from 

supersaturated vapors. In Chapter Two, the homogeneous nucleation of 2,2,2-

trifluoroethanol using an upward thermal diffusion cloud chamber was presented. 

Specifically, its critical supersaturations in the temperature range between 266-296 K was 

studied. The experimental results were compared to the classical nucleation theory and to 

the scaled and corresponding states models. Interestingly, the comparison reveals that the 

classical prediction matches the experimental date very nicely. This result is unexpected 

since trifluoroethanol is a polar molecule (µ = 2.03 D)170 and, hence, its nucleation barrier 

is expected to increase due to dipole-dipole interactions within the nucleating clusters. 

The critical supersaturations for different polar substances28,171 have been reported before 

and they showed higher values compared to the classical predictions. One of the 

parameters, which could play an important role in the predictive power of the classical 

nucleation theory, is the accuracy of the physical properties used in the theory, such as, 

the vapor pressure and the surface tension. The surface tension of trifluoroethanol has 

never been measured experimentally before. Therefore, its surface tension was 

calculated, which could include some error factor in terms of accuracy. In the classical 

nucleation theory, the free energy of nucleation is proportional to the cube of the surface 
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tension. Therefore, any small error could result in a significant change in the classical 

predictions.  

On the other hand, by using the corresponding states model, trifluoroethanol 

results showed a slight deviation from simple fluids. The scaled law predicts the critical 

supersaturations of trifluoroethanol correctly. Moreover, it also predicts the critical 

temperature (Tc) of trifluoroethanol within 1% accuracy. 

The condensation of supersaturated vapors of trifluoroethanol on magnesium 

nanoparticles as discussed in Chapter Four was also studied. In this work, the vapor 

supersaturation was adjusted below that required for homogeneous nucleation. The 

effects of different factors, such as the supersaturation, the electric field, the pressure and 

the laser power, have been studied. The number of droplets detected, following the laser 

pulse, increases as the supersaturation and pressure inside the chamber was increased. 

Meanwhile, it decreases as the electric field and the laser power inside the chamber was 

increased. Increasing the supersaturation results in activating, almost all the magnesium 

particles generated by laser vaporization. On the other hand, increasing the pressure 

results in increasing the residence time of nanoparticles inside the chamber, and hence 

more collision with the trifluoroethanol results. It was observed that increasing the 

electric field, increases the electrical mobility of charged particles generated by laser. 

Therefore, a significant fraction is allowed to drift quickly through the nucleation zone 

before it is activated. The results also showed that there was almost no sign preference on 

the condensation of trifluoroethanol on charged particles. Finally, by increasing the laser 
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ablation power, bigger particles are ejected from the magnesium metal surfaces and fewer 

particles are capable of inducing this heterogeneous nucleation. 

The laser vaporization controlled condensation (LVCC) method was used to 

prepare nanoparticles from the vapor phase, as presented in Chapter Three. A simple 

method is used to prepare intermetallic nanoparticles of nickel and iron aluminides, 

where micron-size mixtures of metal powders, of desired composition, are ablated 

simultaneously by a second harmonic generation of a Nd:YAG laser. For example, results 

showed that NiAl alloy nanoparticles were prepared when a mixture of nickel (52 

atomic%) and aluminum (48 atomic%) metal powders was vaporized. Only one phase is 

observed (NiAl), even when the composition of the powder mixture varied. For instance, 

when the aluminum content in the powder mixture was increased, only NiAl alloy 

nanoparticles and some excess of aluminum nanoparticles were observed that increased 

as Al content in the powder mixture increased. These results could be explained in terms 

of the stability of NiAl phase over other possible phases that could also be formed, since 

NiAl has the highest heat of formation. It is also important to mention, that the alloy 

formation in the vapor phase depends on many factors, including the vapor pressure of 

the metallic components and the diffusion coefficient of the metal atoms. 

The influence of electric field on the formation of nanoassemblies and fiber-like 

structures has been also studied. The results showed that there is an electric field 

threshold required to induce these filaments formation. The strength of the electric field is 

a material dependent. For example, intermetallic nanoparticles required less electric field 

compared to metallic and semiconductor nanoparticles to induce filaments formation. 
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Different experiments have been carried out to understand the filament formation, such as 

the effect of oxidation and the strength of the electric field used. These results were 

explained in terms of an electrostatic model, where the electric field played an important 

role in the polarization of neutral and charged particles generated during the LVCC 

process. 

The LVCC method was also coupled with the differential mobility analyzer in 

order to prepare monodispersed nanoparticles. The effect of the electric field applied to 

the LVCC chamber on the size distribution of FeAl nanoparticles was studied. The results 

showed that the electrostatic force is suitable for collecting a specific size of 

nanoparticles, since the electrical velocity of particles is proportional to the size. The 

effect of different temperature gradients that were applied between the chamber plates on 

the size distribution of Si nanoparticles generated in the LVCC chamber was 

investigated. The results showed that the thermophoretic force is available for collecting 

all particle sizes on the cold plate, since it did not depend on the particle size. 

The formation of Au-Ag alloy nanoparticles in the vapor phase by the LVCC 

method using designed targets of compressed Au and Ag micron-sized powder mixtures 

of selected compositions were also investigated. The five selected targets used in this 

work represent the compositions of pure Au, Au0.47Ag0.53, Au0.29Ag0.71, Au0.17Ag0.83 and 

pure Ag. Only one characteristic plasmon peak was observed in the absorption spectra of 

the alloy nanoparticles (blue-shifted with increasing the silver content) and exhibits a 

linear dependence on the composition of the nanoparticles. The effects of laser irradiation 

on the size distribution of the alloy nanoparticles showed two major effects: the first is 
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the particle size reduction (fragmentation), which is observed when a second harmonic 

generation of a Nd:YAG laser (532 nm) was used to irradiate water-dispersed Ag-Au 

nanoparticles, compared to using the fundamental (1064 nm) irradiation. The main reason 

for this effect is the vicinity of the gold plasmon absorption at (520 nm), which is very 

close to the laser wavelength used (532 nm). Therefore, the absorpitivity of gold at 532 

nm is better than at 1064 nm, which results in melting and fragmentation of the original 

particles. The second effect is the dispersity of the particles in water (colloidal formation) 

after laser irradiation. 

In the last Chapter, new methods to prepare nanoparticle-polymer composites 

from the vapor phase were investigated. In the first method, the laser plasma was used to 

prepare a cross-linked polymer resin made by introducing 1,3-butadiene monomers in the 

LVCC chamber followed by laser ablation of different metal targets. Similar results have 

been observed when nickel, platinum and iron aluminide nanoparticle were used, 

indicating that the laser plasma is the initiator for this reaction. 

In the second method, a free radical-thermally initiated polymerization reaction to 

polymerize the styrene monomer vapor on the surfaces of activated nickel nanoparticles 

was used. The polymer component in the nanocomposite showed a weight average 

molecular weight of about 76,000 amu and Tg of 100.57 °C. The characterization of the 

nanoparticle component showed that, the nickel particles were randomly dispersed in the 

polymer matrix. 
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